TS RS TORVERTY S 9 FeT Y,

ok
T

Lbnsantand

A BIT
OF BASIC

This book is in the
ADDISON-WESLEY MICROBOOKS POPULAR SERIES

A BIT
OF BASIC

Thomas Dwyer
Margot Critchfield

University of Pittsburgh

Hlustrations by

Margot Critchfield

VAV

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts ® Menlo Park, California
London ® Amsterdam ® Don Mills, Ontario ® Sydney

The language BASIC was developed at Dartmouth College by John G. Kemeny and Thomas E.
Kurtz.

This book was reproduced by Addison-Wesley from camera-ready proof supplied by the au-
thors. The book was designed by Nancy Ross McJennett, and set in Palatino.

The cover design and art are by Margot Critchfield. '

Library of Congress Cataloging in Publicatien Data

Dwyer, Thomas A 1923
A bit of BASIC.

(The Joy of computing series)
Includes index.
1. Microcomputers--Programming.
2. Basic (Computer program language)
I. Critchfield, Margot, joint author. II. Title.
III. Series: Joy of computing series.
QA76.6.D88 001.642h 80-11428
ISBN 0-201-03%115-9

Copyright (c) 1980 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1980 by
Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

ISBN 0-201-03115-9
Fifth Printing, May 1982

Contents

Preface vii

THE WORLD OF PERSONAL COMPUTING 2

1.0 Introduction 3 1.1 About the Word “Computer” 4

1.2 Some Examples of Personal Computing Systems; A Brief Guide
to Computer Jargon 5 1.3 Packaged Computer Systems 12
1.4 A Simple Example of Programming in BASIC 13 1.5 A
Closer Look at a Programming Session 16 1.6 Another Example
of Programming 20 1.7 How to Cope with Your Computer;
How to Use Timesharing 22 1.8 Project Ideas 24

THE EIGHT-HOUR WONDER; ALL ABOUT BASIC
PROGRAMMING IN ONE LONG DAY (OR EIGHT SHORT
NIGHTS) 26

2.0 Introduction; Hour 0 (Ten Warm-Up Exercises) 27 2.1 Hour
1: A Program to Help Junior Pass Arithmetic 101; PRINT, INPUT,
IF...THEN, STOP, GOTO, END 36 2.2 Hour2: Adding a
“Counter” to Your Program; Printing Scores LET, BASIC Variables
50 2.3 Hour 3: Getting the Computer to Do Its Own Counting;
Loops; FOR...NEXT 54 2.4 Hour4: Printing Patterns; The
Hot Dog Problem; Nested FOR Lodps; PRINT TAB; A Word
About Programming Style 57 2.5 Hour 5: Shelf Labels and
Batting Averages; READ, DATA, RESTORE 65 2.6 Houré6:
Computer Games of Chance; RND, ON...GOTO, INT,
RANDOMIZE, Constants in BASIC 71 2.7 Hour 7: Programs to
Help Mom and Dad Pass Arithmetic 102; ABS, SQR, REM 81
2.8 Hour 8: Keeping Check on a Bank Balance; GOSUB, RETURN,
DEFFNX, ON...GOSUB 88 2.9 ProjectIdeas 95

vi

CONTENTS

3

SIMPLE COMPUTER GRAPHICS; SUBSCRIPTED VARIABLES
100

3.0 Introduction 101 3.1 Different Kinds of Computer
Graphics; Some Terminology 101 3.2 Simple Graphs Using
PRINT TAB(X) 104 3.3 Mathematical Functions in BASIC; SIN,
COS, LOG, EXP,TAN, ATN, SGN; Introduction to Scaling of
Graphs 109 3.4 What To Do If Your BASIC Doesn’t Have
TAB; More About Scaling 116 3.5 Subscripted Variables; The
DIM Statement 122 3.6 Bar Graphs; Pin Ball

Simulation 130 3.7 PRINT USING: Fractured Fractions 134
3.8 Saving Programs on Paper Tape, Disk or Cassette 138

3.9 Project Ideas 143

A BIT OF ADVANCED BASIC 148

4.0 Introduction 149 4.1 An Quverview of Extended

BASIC 150 4.2 Using Extended BASIC; Insertion

Sort 157 4.3 Using String Arrays and Pointers to Sort Business
Records 161 4.4 Medium Resolution Graphics on the TRS5-80
Computer 164 4.5 Color Graphics on the Apple 11

Computer 168 4.6 Projects 175

Appendix A Example of Using a Timesharing System 177
Appendix B The ASCII Codes 179
Appendix C Summary of BASIC 181

Index 183

PREFACE

The number of people who have had the opportunity to learn something about
computers and computing has grown dramatically in the last few years, mostly
through the efforts of educational institutions. Now that low-cost microcom-
puters are appearing in homes, schools, and small businesses at the rate of thou-
sands per week, there will be an even greater number of intellectually curious
people who'll want to investigate the mysteries of computing, both in and out of
school.

Most of these newcomers will want to achieve more than a casual acquain-
tance with the ideas behind computing. They'll want to learn how to tap the full
potential and power of these incredibly flexible machines. In particular, they’ll
want to enhance their understanding of what computers can (and cannot) do
through direct, hands-on experience with computer programming.

One of the best tools developed to date for helping beginners achieve this
goal is the high-level programming language BASIC. This is an English-like cod-
ing system that makes it easy to use and control computer systems. It allows one
to interactively “feed” ideas into the machine in the form of computer pro-
grams—sets of instructions that tell the computer how to carry out the job at
hand.

The name BASIC originally meant Beginners All-Purpose Symbolic
Instruction Code, but today the language is used by professionals for a wide
variety of serious applications. This book covers all of the fundamental features
of BASIC as used on the latest machines. It also introduces a number of the re-
cent extensions to BASIC that make possible such diverse applications as word
processing, business record sorting, and computer graphics. The goal of the
book is to show that today, more than ever, a bit of BASIC can go a long way.

Chapter 1 discusses the electronic hardware of microcomputers and larger
time-shared computers, and illustrates how this hardware is used to get started
in BASIC programming. A complete discussion of the key features (and use) of
standard BASIC is then given in chapter 2 in the form of eight “hours” that can
be used for classroom or self-paced study. Chapter 3 shows how to write pro-

vii

viii

PREFACE

grams that produce simple graphics, and also discusses the use of BASIC func-
tions and BASIC arrays. Chapter 4 summarizes the latest features of extended
BASIC, with examples based on the use of BASIC-PLUS, Microsoft BASIC,
TRS-80 Level II BASIC, and APPLESOFT BASIC. Additional examples show-
ing how to use the special graphics features of these last two machines are given
in the final sections. The first three chapters of the present work are revised ver-
sions of material that first appeared in our earlier book, BASIC and the Per-
sonal Computer. The material in chapter 4 is all new.

The programs used to illustrate these ideas are taken from several fields,
but no previous experience with computing is required. While some of the appli-
cations go beyond those usually found in introductory books, they can be mas-
tered by anyone with the enthusiasm (and perseverance) of the amateur. Also,
working with an idea on a computer is very different from just reading about it.
In fact, anyone who explores the concepts in this book using a computer can ex-
pect to experience a new kind of human learning. Computer explorations com-
bine the insights of do-it-yourself learning with the discipline of logical thinking.

In addition to supporting personal computing, this book will find use in
introductory computing courses for both colleges and secondary schools. For
this reason, a selection of project ideas has been given at the end of each chap-
ter. Student projects make a good alternative to traditional testing as a way of
determining grades in such a course. There are also a number of self-test sec-
tions in the book to help clarify new concepts as they arise.

The authors wish to express their appreciation to the many students and
teachers who, along with Bill Gruener of Addison-Wesley, encouraged us to put
together an introductory book of this kind. It was also Bill who provided the
exactly correct title, and then proceeded to make the many wheels turn that are
essential for converting a publishing idea into reality. Finally we thank all those
innovative individuals in the computer industry (many of them unknown) who
have turned the field upside down by daring to produce the amazing machines
that now make convivial computing possible for everyone.

A BIT
OF BASIC

THE WORLD OF PERSONAL

COMPUTING

2!

—— S e

Poadon ""i"'f":“[
8 K T & X

1.0 INTRODUCTION

The world of personal computing is basically a friendly one, and no special
credentials are needed to become part of it. While it's true that modern
computer systems involve complex technologies and theories, their use is
becoming easier all the time. This means that the mastery of personal
computing can be based on the strategy of doing interesting things first, and
then using the experience gained as the basis for more detailed study.

A key part of this strategy is to use a liberal dose of imagination right
from the start. Computer amateurs aren’t afraid to fantasize a bit, knowing
that's where half the fun lies. Surprisingly, most early ideas of this sort have
become reality: color graphics, computer music, computer robots, and even
computers that “speak” (and in a crude way “recognize”) English.

Does this mean that computers can eventually be used to do just about
anything—including the making of human judgments? No. The diversity in
personal computing, and the way so many different points of view have
contributed to its growth, makes it clear how impossible (and undesirable)
that would be.

Part of the reason for this diversity is that personal computing spans all
ages. Grade school kids are contributing entries to “computer fair” contests

4 CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

that have the judges scratching their heads. Popular magazines on the subject
are found nestled between the textbooks of college students. And more than a
few over-forty types report that they are caught up in an involvement that's
like nothing they can remember.

While the exact future of personal computing is still an unknown, it's
clear that variety will always be a key ingredient. For many, personal
computing will be mostly a spectator sport. For others, it will become a
powerful tool for exploring all kinds of new ideas. In either case, an
excursion behind the scenes to see what's possible—which is where we're now
headed—is worth everyone’s while.

1.1 ABOUT THE WORD “COMPUTER”

It used to be that computers were easy to spot. They filled large rooms with
tons of electronics, crammed behind complex panels dotted with blinking
lights. They were understood by only a handful of people, they cost a small
fortune, and they were used for the most mysterious of purposes.

But a lot has changed in recent years. Advertisements now proclaim the
virtues of everything from “computer-controlled fuel-injection” car engines,
to “digital computer displays” for clocks and ovens. And the number of
“computer-controlled” game attachments for home TV is growing rapidly.
It's reasonable to ask whether all these uses of the word computer mean the

same thing.

SECTION 1.2 SOME EXAMPLES OF PERSONAL COMPUTING SYSTEMS 5

While there’s an element of truth in such popular usage, in many cases
the word computer really refers to a special-purpose piece of hardware built
for one task. In such instances, it would be more accurate to use the words
“microprocessor”, “logical circuit’, or “digital control circuit”. As a rule,
consumer products don’t qualify as full-fledged computers.

But there’s an important exception to this rule: it's the device called the
personal, general-purpose, programmable digital computer. As the words
say, this is not a machine built for any special purpose at all. In fact it comes
out of the factory just waiting to be told what to do—to be programmed. It's
the closest thing to an “imagination extender” that’s ever been invented.

Of course there are some additional questions that need to be asked. Do
personal computers really work? Who can afford them? And if my resistance
breaks down and I get one, what will it do?

Those are good questions, and the answers to the first two are easy: (1)
yes, those made by reputable manufacturers work, and (2) you can buy a
modest one for about the price of a component hi-fi system, or a complex
one for the price of an automobile.

The third question takes a bit longer to answer. We'll begin by giving a
brief overview of the components found in modern computers, and then show
how these machines can be programmed using the high-level programming lan-
guage BASIC. New ways of using this language to make a general-purpose com-
puter do all kinds of special purpose things will then be introduced in each suc-
cessive chapter. The topics covered range over many of the areas that underlie
professional computing today.

Before getting started on this plan, it will be helpful to first explain some of
the strange abbreviations and jargon used to describe computer systems. We'll
do this in terms of personal computers, but most of the words apply to larger
systems as well.

1.2 SOME EXAMPLES OF PERSONAL COMPUTING
SYSTEMS; A BRIEF GUIDE TO COMPUTER JARGON

If you read the ads for personal computers or visit a computer store, you
very soon run into a new vocabulary: RAM, ROM, BYTE, I/O, SERIAL,
PARALLEL, CPU, VDM, ASCII, PROM, EPROM, CRT, — it's all very
mysterious at first. Let's try to clear the air by looking at an example of a
rather complete personal computing system to see what each of these terms

means.
You'll notice that there are several components in our system which
interconnect (that's why it's called a computer system). There are also
alternatives for some of the components, which is why the phrase AND/OR
appears on our diagram. (Of course if money is no problem, you can drop

the OR).

Hardcopy Terminal

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING
INPUT/OUTPUT COMPUTER MASS
{ I STORAGE
°°
PO NNEN: |
o Cassette
& \S T
P S
ASCil Keyboard 40“‘ © ¥ 0 &R c‘o‘:"a 9‘\"' AND/OR
AND/OR |
/ Floppy
Disk
\- / = = E = Y S;:?em
/ ‘ Motherboard /
LT AT T I (@

The three headings at the top of the diagram show that a full-fledged
computer system consists of three major groups of components. We've
labeled these as the INPUT/OUTPUT group, the COMPUTER group, and
the MASS STORAGE group. Let's examine the components found in each of
these groups in greater detail.

Input/Output Components

The INPUT/OUTPUT components are often called “I/O devices”. An input
device is used to transmit both programs and the data which are to be
manipulated by programs into the computer. In other words, we want to
take information in a form understood by humans, and feed it to the
computer in a form that can be handled by machines. The most common
input device is what's called an ASCII keyboard. This looks a great deal like
a typewriter keyboard. It has all the letters, numbers, and special symbols
needed to type programs, math formulas, and even English text. When a key
is pressed on this keyboard, a unique “7-bit” code is generated. The word
“bit” means a simple 2-valued piece of information (something like the

SECTION 1.2 SOME EXAMPLES OF PERSONAL COMPUTING SYSTEMS 7

“thumbs-up-thumbs-down"” code of the Romans). In computer work the two

values of a bit are written as 0 and 1.
For example when you press the key for the letter A, the 7-bit code

1000001 is sent to the computer. The process looks something like this:

\\\\

<))
f
1000001 COMPLUTER.
HEREEN
0 A
lllHlHHlH ==

l l COMMON “GROUND” WIRE

When each of the bits is sent on a separate wire as shown, we speak of a
parallel connection. When the bits are sent one after the other on a single
wire, the connection is called serial.

In the computer, bits are represented by two different voltages, usually
called “high” (the 1) and “low” {the 0). The 1 and 0 can also be read as "bit
on” and “bit off’. The important point is that one bit gives only two different
codes. We can come up with a lot more codes by using seven bits. With one
bit there are 2'=2 codes. With seven bits we'll have 27=128 codes, so we can
take care of all the alphabet, numbers, and special symbols needed, plus a
few extra codes for control functions.

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

Output devices work in a reverse manner. Now the problem is to get the
computer to display information in some kind of “human readable” form.
For example, many personal computing systems use a TV monitor as an
output device. This is either a slightly modified home TV set, or a
closed-circuit TV monitor of the kind used in security systems. These are
often called CRT displays (because they use Cathode Ray Tubes).

For TV output, a special piece of hardware is needed to convert the
ASCII codes inside the computer back into symbols of the kind we use in
ordinary printing (A,B,C,D,...,0,1,2,3,...,#,+,- etc.). If you look inside the
computer shown in our diagram, you'll see a “board” labeled VDM. This
means Video Display Module. It's a circuit board that takes the ASCII codes
from the computer, and converts them into dot patterns which show up on
the TV monitor. (The term VDM-1 was coined by Processor Technology
Company which made both boards and computers.) The patterns are chosen as
shown in the accompanying photo to look like standard printing.

Another kind of I/O device is the “hard-copy” terminal. This includes
both an ASCII keyboard for input, and a mechanism similar to that on an

SECTION 1.2 SOME EXAMPLES OF PERSONAL COMPUTING SYSTEMS 9

Dot patterns on a CRT screen produced by a video display
module.

electric typewriter for output. So “hard-copy” means output printed on
paper. This is important for applications where you want to save the output,
or reproduce it (as done in this book). Hard-copy terminals do not need a
VDM board. They contain their own code-conversion circuits. They are
connected instead to what's called one “port” on an “I/O board”. There are
different kinds of ports for different kinds of terminals, but most modern 1[/O
boards can be made to work with any kind of terminal. It's usually just a
matter of changing a few wires on the board, following the instructions
supplied by the manufacturer.

The Computer Components

The central part of our diagram is labeled “computer”. This is shown as a
collection of several circuit boards called modules. These plug into a common
“motherboard”’. The motherboard has a bunch of printed wires (usually 100)
soldered to connectors (called “slots”) that accept the modules. This way a
computer can grow. As you buy new boards, you simply plug them into an
empty motherboard slot. So if you think you'll be expanding some day, it
will be worth buying a computer that has a lot of slots available (up to 22 are
available on some machines). You'll also want to make sure that the power
supply (not shown in our diagram) which comes with your computer can
handle that many boards. There is usually only one power supply, and it
must have the capacity for handling all the boards plugged into the
motherboard.

10

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

Microcomputer module board being plugged into a slot on the
motherboard of an IMSAI computer.

One of the boards shown inside our computer is labeled RAM. This
means it's a Random Access Memory board. It's where the programs and
data we feed our computer are stored. This information is stored in binary
form (all 0’s and 1's). As a programmer in BASIC you won't have to worry
about this since BASIC uses normal decimal notation.

Inside a microcomputer, the binary bits of information are usually orga-
nized in groups of eight, called bytes of memory. A small RAM board holds 4K
bytes. Normally K means 1,000. But in computer work, 1K means 1024, so a 4K
board has 4096 bytes. There are also boards with 8K, 16K, etc. bytes. Memory
can be increased in computers by plugging in extra boards. The upper limit on
many machines is 64K bytes which is 65,536x8 = 524,288 bits.

The reason these memories are called random (or direct) access is that
the computer can go directly to any byte, either “reading” its contents, or
“writing” (storing) new information there. The computer can rapidly access
bytes of information at random-—there’s no need to sequentially search all
through memory looking for something.

A ROM board contains Read Only Memory. Individual bytes of this
memory can also be accessed directly (so you could also call it random

SECTION 1.2 SOME EXAMPLES OF PERSONAL COMPUTING SYSTEMS 11

access), but now no writing is permitted—only reading. ROM is used for
permanent storage of programs or data that will never be changed
Except—well there is a trick for erasing some ROM'’'s with a special
ultraviolet light. Then you can program new “permanent” data into them.
Boards of this type are called EPROM boards, which means Erasable
Programmable Read Only Memory.

The board labeled CPU (Central Processing Unit) is where all the action
takes place. The circuits on this board access data from memory, work on it,
and ship it back out again. They also make sure the I/O devices get a chance
to do their thing.

The heart of the CPU board is a microprocessor “chip”, sometimes called
a microprocessor unit (MPU). Some of the well-known microprocessor chips
are the 8080 (Intel Co.) , the Z-80 (Zilog Co.), the 6800 (Motorola), and the
6502 (MOS Technology). The CPU board also contains “clock” circuitry to
keep all this busy activity synchronized. The clock produces several million
pulses per second, acting like a very fast orchestra leader working to keep
everything in step.

The computer box (or “mainframe”) also contains the 1/0O boards we've
previously discussed, and the boards that may be needed to connect with
mass storage devices. Let’s see what these are all about.

Mass Storage Components

Imagine that you've had a busy session with your computer, and you now
have a program for a brilliant new game up and running. But it's time to
leave for a more gainful occupation, so you turn the computer off.
Unfortunately, that act will wipe out all the information stored in RAM
memory, so the next time you wish to use the computer you'll have to start
all over. A similar problem occurs when you switch to a new program. The
old one will have to be “scratched” (erased) before the new one can be typed
in.

The solution to this dilemma is mass storage (also called off-line
storage). The idea is to save copies of your programs and data in a form that
can be re-loaded very rapidly—without re-typing at the keyboard.

The two most popular forms of mass storage are tape cassettes, and
magnetic disks (sometimes spelled “discs”). The cassettes are the same kind as
used in home recording. A special board inside the computer called the
“cassette interface” is used to convert the bits in memory into a signal that
can be fed into the recording jack of the tape recorder. This allows the
saving of programs on tape. Conversely, the same board takes the output
signal from your recorder (usually from the “monitor” jack), and converts it
back into memory bits. This is how you load old programs back into
memory.

An even better type of mass storage is the “floppy disk”. This is about
the size of a 45 rpm record, but the information is recorded magnetically.

12

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

The transfer speeds for disk are much higher than for tape. Further, disk
playback machines can retrieve programs randomly. This is analogous to the
way a person can pick up the arm on a record player and select one
particular band of music (on tape you'd have to do a fast wind through
everything). We'll have more to say about floppy disks and cassettes at the end
of Chapter 3. We'll also mention a third type of storage, punched paper tape, in
Section 3.8.

1.3 PACKAGED COMPUTER SYSTEMS

The previous section showed how a number of components are put together
to make a full-fledged computer system. It's a bit like assembling a
customized hi-fi system—confusing at first, but the most flexible route for
those who want to experiment with all the possibilities of personal
computing.

There are also computer amateurs who would rather concentrate more
on applying their computer, and not have to worry about much more than
plugging the system in and turning it on. There are “packaged” systems that
allow one to do just that. At the high end of the price range, these take the
form of desk-top computers made for commercial and educational uses.
These systems are relatively expensive, and are sold mostly to institutions.

But there are also lower-priced packaged systems made for the consumer
market, and the number is growing. Some are neatly enclosed in handsome
cabinets with the keyboard built in. Others are a bit less pretentious, and
assume you'll make your own enclosure. But most of them are both reliable
and sophisticated.

An early example of a low-cost “almost” packaged system was the Apple I
computer. It had all the circuitry on one board. This board included RAM and
ROM memory, the CPU, I/0O, a VDM, power supply, and even a tape cassette
interface. This computer then evolved into the Apple II machine shown in the
photo on the next page. The Apple Il can produce color graphics as well as text,
and we'll explain how this is done at the end of Chapter 4. It also has built-in
expansion “slots” that allow the use of numerous special circuit boards, includ-
ing some that can be applied to computer music and speech synthesis projects.

Despite their apparent simplicity, packaged computers allow the full
range of programming. A typical session goes something like this:

1. Plug the system in and turn the power switch to ON.

2. Following a few simple directions, load the BASIC interpreter program
from a cassette tape or disk. On many machines you don’t even have to do
this. BASIC is permanently stored in “read-only” memory.

3. Now type in the new BASIC program you've decided to try today. If you
make a mistake, just re-type the incorrect lines.

SECTION 1.4 A SIMPLE EXAMPLE OF PROGRAMMING IN BASIC 13

The Apple Il computer. The PET computer.

4. Run your program. If you don’t like what it's doing, change it or add to
it.

5. If you like what you see, save the program on a tape cassette to show
your next visitor. Turn the power switch off.

The only things you may not have understood in the above were the
references to “loading the BASIC interpreter”, “typing in a BASIC program”,
or “running a BASIC program”. So let's turn our attention now to the
business of programming, and show some simple examples of what's

involved.

1.4 A SIMPLE EXAMPLE OF PROGRAMMING IN BASIC

Once all the hardware is connected and working, it's time to say to our
computer system “don’t just stand there—do something.” However we'll have
to be a bit more explicit, and spell out that “do something” in greater detail.
This means we're now ready to get into the business of programming, which
isn't difficult if you use a high-level language. Actually, it's as simple as

14

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

ABC, where A means “get the machine ready”, B is "“write and load your
program”, and C is “run it".

Writing a program amounts to making a list of very exact instructions in
a language “understood” by your computer. The fundamental language
understood by any computer is called “machine language”. This is not a good
language for people however, so higher level languages like BASIC have been
invented. Now the problem is that we'll need an interpreter—a special
program that translates BASIC into machine language. BASIC interpreters
are supplied by most companies that make personal computers. However
these interpreters vary in sophistication, ranging from TINY BASIC to
BASIC-PLUS. Some idea of how fancy your interpreter is can be gotten from
how much memory it requires. You'll hear references to 4K BASIC, 8K
BASIC, 12K BASIC, disk-extended BASIC, and others. In general, the larger
versions are more powerful.

The Atari Computer has its BASIC interpreter stored on
ROM in the form of a “cartridge” that can easily be inserted
into the machine.

Now that we understand the need for an interpreter, we can get back to
our ABC's of making a computer do something.

A. Get the machine ready. This means turning everything on, and then
following the procedure needed to get your BASIC interpreter in memory.
Each machine is different, so you'll have to read your instruction manual
at this point. Also, some machines store BASIC permanently in ROM.

B. Write and load your program. How to write programs is the subject of
most of this book. Once it's written (on paper), you load it by typing it in
at the keyboard (if it’s an old program, you load it from tape or disk).

C. Run (or execute) your program. This is easy. All you do is type RUN. If it
works as expected, you jump with joy. If not (which is more likely), it's
back to the drawing board in order to find your “bugs” (yes, it's probably
your error). Actually, finding and fixing bugs is one of the more
rewarding parts of beginning programming.

SECTION 1.4 A SIMPLE EXAMPLE OF PROGRAMMING IN BASIC 15

Incidentally, the total amount of memory youll need will be that
required by your BASIC interpreter plus that needed by your program. So if
your computer has a total of 16K bytes of memory, and if you have an 8K
BASIC, then your program will be limited to 8K bytes maximum. Most of
the programs in this book will work within that limitation. To handle the
larger programs, or to expand on them, a total of 32K bytes will be about
right.

Here's what the ABC process looks like to the users of two typical
machines. On the left you'll see a packaged system with a TV monitor for out-
put and with BASIC stored in ROM. On the right a more complicated system is
shown with a hardcopy output terminal, and a floppy disk for mass storage.

A. The BASIC interpreter is accessed from mass storage or from ROM.

BASIC is made available on the Apple 11 BASIC is loaded from a floppy disk
by pressing the control and B Keys. on the Altair computer.

B. A program is typed in which looks like this:

ULT, TABLE FOR 9°
-gﬁﬁsss = "iKe9

O O

Program typed on the Apple. Program typed on the Altair.

16 CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

C. And now it's run

| § ,
9

19 |
i3

Run of the program on the Apple. Run of the program on the Altair.

1.5 A CLOSER LOOK AT A PROGRAMMING
SESSION

Now that we've got the big picture, let's zoom in on some of the details that
steps B and C involve. Suppose you want to write a program to generate
some multiplication tables (just in case your calculator breaks down some
day).

If you only want to use the computer to calculate a few values, here's
what you type (from now on, we'll only show hardcopy output, but of
course the same ideas hold for TV monitor output).

FROM NOW ON,
THIS OUTLINE

WILL BE USED
TO INDICATE ACTUAL
COMPUTER INPUT
AND OUTPUT.

THE USER TYPED
THIS INPUT.

THIS MEANS PRESS CARRIAGE RETLRN.
(NOTHING WILL ACTUALLY SHOW.)

PRINT 12%9(8) <—
108

THE COMPUTER TYPED
THIS oUTPUT,

MULT TABLE

SECTION 1.5 A CLOSER LOOK AT A PROGRAMMING SESSION 17

This example uses what's called direct mode (also called immediate
mode) in BASIC. That's because you get an answer directly after you press
“carriage return”. (The carriage return key is always pressed at the end of
lines.)

But this only gives us one multiplication. We could get two answers by
typing the following direct mode statement:

PRINT 12%#9,11%9

108 99

That's still not much of a multiplication table. It's time for a full-fledged
indirect mode program. Here’s what this might look like:

YOoU TYPE ALL
OF THIS. DON’T

FORGET (CR) AFTER
EACH LINE.

10 PRINT "MULT. TABLE FOR 9~
20 FOR K=0 TO 12

30 PRINT K#9

40 NEXT K

50 END

L.—-f—___/\

For reference purposes, we've called our program MULT TABLE. All the
indirect mode programs in this book will be given a reference name which
will be printed in the margin as shown.

Notice that an indirect mode program is made up of several
“statements”, each of which begins with a line number. (Don’t worry too
much about the details now—this will be explained again in Chapter 2).

So now we have a program, but no answers. That's because an indirect
mode program doesn’t run {or “execute’”) until we tell it to by typing the
command RUN. Watch what happens:

18

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

NEW

20 FOR K=0 TO 12
30 PRINT K*9

40 NEXT K

50 END

s> RUN
MULTTABLE FOR 9
0

[=) 9
< 18

THE COMPUTER gg

PRINTS 45

ALL THIS. 54
63
72
g1
90
99
108

0K

10 PRINT "MULT. TABLE FOR 9"

—A——N\.—M"——M«q

As you can see, our program now produces 12 different products. To
label them more neatly, all we have to do is change line 30 a bit. If we type in
a new line 30 as follows, it will take the place of the old one. Then running
the program will produce the improved output. (The improved output helps
someone who doesn’t know what our program is all about understand the

results).
OK
THIS LINE 30
WILL REFLACE —®= 30 PRINT K; -
THE OLP LINE 30. RUN
MULT. TABLE F
0 TIMES 9 =
1 TIMES 9 =
2 TIMES 9 =
3 TIMES 9 =
4 TIMES 9 =
5 TIMES 9 =
6 TIMES 9 =
7 TIMES 9 =
g TIMES 9 =
9 TIMES 9 =
10 TIMES 9
11 TIMES 9
12 TIMES 9
g K
THIS MEANS THE PROGRAA IS5

FINISHED, AND IT'S O.K. TO DO
SOMETHING ELSE. OTHER COM-
PUTERS TYPE “DONE” OR

YREADY", OR NOTHING AT ALL,

TIMES 9 = "; K*9

OR 9

0
2
i8
27
36
45
54
63
72
g1
g0
29
108

SECTION1.5 A CLOSER LOOK AT A PROGRAMMING SESSION 19

To see what the modified program looks like at any time, simply type
the command LIST. This will give you a listing of all the latest statements in
your program.

LIST

IMPROVED 10 PRINT “MULT. TABLE FOR 9°
MULT TABLE 20 FOR K=0 TO 12

30 PRINT K; " TIMES 9 = "5 K#9
40 NEXT K

50 END

If you want to see the output again, just type RUN. You can do this as
often as you wish. To see the program, type LIST; to see it execute and
produce output again, type RUN.

Incidentally, if you make typing mistakes, you'll usually get what's
called an error message. This may not mean much to you at first, but the
cure is simple: retype the offending line. Here's an example where the word
RUN was typed incorrectly as RUNG. The computer called it a SYNTAX
ERROR. Retyping the word correctly cured the problem.

Correcting an error by retyping a misspelled word.

You may now ask if we can extend this program to print several
different multiplication tables. The answer is yes, and it only takes a few
more lines. Project #2 at the end of this chapter shows how to do this.

20

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

1.6 ANOTHER EXAMPLE OF PROGRAMMING

PIGGY BANK

Suppose that you've just finished the multiplication table program of the
previous section, and want to try something else. You decide not to save
your program because it's short and can be typed in again any time. For this
reason, the first thing to do is to erase the old program from memory. In
many versions of BASIC you do this by typing the command SCR (for
scratch). Another form of this command is NEW, which means clear out
memory because here comes a new program. (On a number of computers,
you must type NEW at the beginning of any session. If you're not sure, try it.
You won't hurt anything, but you will erase memory.)

Now let’s enter a new program which is to calculate how much money
will accumulate in a piggy bank. This time, we'll deliberately make some
typing mistakes so you can see how this is handled.

e P T e I NS RS

10 PRUNT “WHAT YEAR WERE YOU BORN";
ILLEGAL VERB at line 10 <

THIS IS AN'ERROR MESSAGE”
(PRINT WAS SPELLED WRONG.)

Ready

10 PRINT WHAT YEAR WERE YOU BORNj;
SYNTAX ERROR at line 10 <

ANOTHER ERROR.
(NO QUOTE MARKS.)

Ready

10 PRINT “WHAT YEAR WERE YOU BORN";
20 INPUT Y

30 PRINT "HOW MANY CENTS A DAY DID YOU SAVE";
40 INPUT C

100 FOR K=1 TO 21

110 PRINT Y+K, C*365%K/100

WE FINALLY GET

120 NEXT K

130 END IT ALL TYPED.
RUN

WHAT YEAR WERE YOU BORN? 1945
HOW MANY CENTS A DAY DID YOU SAVE? 75 iAND T RUN5_1>
1946 273.75

1947 547 .5

1948 821.25

1949 1095

1950 1368.75

1951 1642.5

1952 1916.25

1953 2190

1954 2463.75

1955 2737.5

1956 3011.25

1957 3285

1958 3558.75

1959 3832.5

1960 4106.25

1961 4380

1962 4653.75

1963 4927 .5

1964 5201.25

1965 5475

1966 5748.75

I I

SECTION 1.6 ANOTHER EXAMPLE OF PROGRAMMING 21

NOTE 1: When you type in two lines with the same line number, the old line is
replaced. If you first type
10 PRINT “HI"”
and then type
10 PRINT “HOWDY”
only the line 10 PRINT "HOWDY" is in the computer.

NOTE 2: To get rid of a line, just type its line number followed by a carriage

return. Typing
10 (carriage return)
will erase line 10 from the program.

NOTE 3: To get rid of an entire program type SCR or NEW. To double check
on what's actually in the computer at any time, simply type LIST.

Suppose we now want to add a few additional lines to the output. Since
the old program is still in memory, all we have to do is type in the desired
new statements as follows:

IMPROVED 50 PRINT "MONEY IN PIGGY BANK ON EACH BIRTHDAY --UNTIL 217
PIGGY BANK 60 PRINT "FROM"; C; "CENTS PER DAY, NO INTEREST"

70 PRINT "=YEAR--=-=-- TOTAL DOLLARS”

RUN

WHAT YEAR WERE YQOU BORN? 1945

HOW MANY CENTS A DAY DID YOU SAVE? 87

MONEY IN PIGGY BANK ON EACH BIRTHDAY ~-UNTIL 217]
FROM &7 CENTS PER DAY, NO INTEREST

NOTICE THE
ADDITIONAL

~YEAR~ =~ w -~ TOTAL DOLLARS OUTPUT.
1946 317.55
1947 635.1
1948 952 .65
1949 1270.2
1950 1587.75
1951 1905.3
1952 2222 .85
1953 2540 .4
1954 2857 .95
1955 3175.5
1956 3493 .05
1957 3810.6
1958 4128.15
1959 4445 .7
1960 4763 .25
1961 5080.8
1962 5398.35
1963 5715.9
1964 6033.45
1965 6351
1966 6668 .55

22

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

Remember, the carriage return key must be pressed after every line you
type, including the 1945 (year born), and the 87 (cents saved per day). Also
remember that you are not supposed to understand how this program works
— that's coming in Chapter 2. For now, the idea is just to get the big picture
of how a programming session goes together.

Commands in BASIC

Words like RUN and LIST are called commands. Notice that they don't have
line numbers. Also notice that commands cause something to happen right
after you press the return key (CR).

There are several other commands in common use. For example, to store
programs on tape or disk, there is usually a SAVE command. To retrieve a
program, there is a LOAD command (on some systems, this is called the
OLD command, since you're going to retrieve an old program). The SAVE
and LOAD commands are not found in all versions of BASIC, so you'll want
to check your system manual to see what commands are available.

All versions of BASIC have a command that “erases” the entire program
currently in memory. On some systems the command is SCR (short for
scratch). On others it is NEW (which means erase the old program, because I
want to create a new one).

Some fancier versions of BASIC have a command called DELete for
erasing groups of lines. For example,

DEL 50-70 or DELETE 50-70

would delete all the lines with numbers from 50 up to (and including) 70.

1.7 HOW TO COPE WITH YOUR COMPUTER

By now it should be clear that no two computer systems will be exactly alike.
The variety possible in components, together with the fact that the
interconnections often have to be customized, means that many individual
owners of computers will have unique systems.

Getting your own particular collection of hardware up and running can
be both rewarding and frustrating. But help is available in the form of books,
magazines, computer clubs, and computer stores. The better stores function
something like a good high-fi shop, and offer both advice and service on the
components they sell. They can also refer you to others who have put
together similar systems, or to personal computing clubs where computer
amateurs meet and share ideas.

The closest thing to a common link between the great variety of
computer systems is the programming language BASIC. That's why most of

SECTION 1.7 HOW TO COPE WITH YOUR COMPUTER 23

the remainder of this book will explain applications in terms of BASIC
programs. But even here you must expect some variation. Not all versions of
BASIC have the same features. Also, the same features may produce slightly
different results in output.

Don’t let this discourage you. There's a very simple solution to the
problem of adapting to such variations. It’s to experiment. You'll be surprised
at how good you can get at this (which really amounts to becoming your
own teacher) once you see that experimentation won't hurt anything.

We'll try to help by pointing out some of the variations in BASIC as we
go along. We'll also demonstrate some techniques for “simulating” fancy
features you may not have in your version of BASIC. The best way to
evaluate any BASIC is to try writing and running some of your favorite
programs in it—to set up what are called “benchmarks”.

One last suggestion—if you have a choice, get a BASIC that has (among
other things) floating point arithmetic, arrays, and strings. Floating point
arithmetic assures that you get full decimal values in your answers. For
example, in some TINY BASIC interpreters, if you say PRINT 10/3 you'll get
3 for the output. A BASIC with floating point arithmetic will give an answer
of 3.333333 which is of course much better (if not downright essential) for
many applications.

As to what arrays and strings can do for you, Chapters 3 and 4 give lots
of examples. Most versions of BASIC that take 8K bytes or more will have
all these features. There's also little doubt that new and better versions will
continue to appear. So it's a good idea to set one’s sights high right from the
beginning.

Timesharing

Using a language like BASIC means that the programs developed can be run
on just about any microcomputer. But larger computers can also be used,
since most of these can be programmed in BASIC. These machines are too
expensive for individuals of course, so they are usually found at institutions
where they are “shared” by many users. The technique that makes this
possible is called timesharing. It works something like a very fast version of a
telephone answering service where there is only one operator but lots of
phones. Each client gets a fraction of the operator’s time. In a similar
manner, timesharing users only get a fraction of the computer’s time, but the
sequence repeats so rapidly there is usually no noticeable waiting for service.

To use timesharing you need a terminal with a keyboard for input, and
either a typewriter-like printer or a TV-like screen for output. The terminal
must be connected to the large computer either directly with wires, or
indirectly with a gadget (called an acoustic coupler) that uses a regular
telephone set to communicate with the computer.

24

1.8 PROJECTS

CHAPTER 1 THE WORLD OF PERSONAL COMPUTING

"HARDWIRED”

Once connected to the computer, people working at timesharing
terminals can try most of the ideas about personal computing discussed in
this book. When using BASIC, a timesharing terminal acts pretty much “as
if” it were a personal computer.

There is one minor difference. Users of timesharing start their session by
typing a line or two that gives their user number and their password (this is
to control unauthorized use of the machine). This process is called “logging
in”. When finished, a timesharing user must also “log out”. On many systems
this is done by simply typing BYE (which means “goodbye”). An example of
how this works for the timesharing system used on a PDP-10 computer is
given in Appendix A. (Other systems will differ slightly, and local
documentation should be consulted.)

The last section in each chapter suggests some project ideas. These will
usually be of enough substance to take a few days of on-and-off activity. By
exception, we'll only suggest two short projects for Chapter 1. However
they're well worth doing, since this will make the reading ahead much easier

going.

1. Beg, borrow, or cajole use of a microcomputer that speaks BASIC, and
actually type in and run the programs in Sections 1.5 and 1.6. Don't

SECTION 1.8 PROJECT IDEAS 25

worry about the fact that the way these programs work hasn't been
explained yet. The main point is to get some hands-on experience with the
whole process. The project will also get you familiar with the startup
procedures needed for future programming.
2. After you have the multiplication table program of Section 1.5 running,
try this more advanced version just to see what happens.
NEW
SFOR D=1TOSQ9
10 PRINT "MULT. TABLE FOR";D
20 FOR K=0 TO 12
30 PRINT D;” TIMES ";K;” = ";D*K
40 NEXT K
50 PRINT
60 NEXT D
70 END
RUN

WS L OE AL TR

o o

The TRS-80 personal computer distributed through Radio Shack stores. With this
machine use the ENTER key instead of CARRIAGE RETURN. The Level Il BASIC sup-
plied with this machine is very similar to BASIC-PLUS.

—

THE 8-HOUR WONDER
All About BASIC Programming

in One Long Day
(or Eight Short Nights)

Immlll!llllﬁmmlﬂillﬂIllIlllIllmlllIilllllllllilllﬂllﬂlﬂi

== 0 THEN 490

2.0 INTRODUCTION

Developing an artistic command of BASIC and extended BASIC — which is
where we're headed next — will take a while. But getting the fundamentals
under control takes very little time—even less than eight hours for most
people. This is because the language has a small vocabulary, and the words
used pretty well mean what you'd expect.

In this chapter we’ll look at about twenty key words from this
vocabulary. Another dozen or so key words will be explained in Chapters 3
and 4. These, together with a number of programming techniques, will
enable you to express ideas with a growing fluency. Add the sage old advice
of “practice, practice, practice”, and you'll be a virtuoso of the ASCII

keyboard in no time at all.

The key words of BASIC are used to make up what are called statements
(which are something like “sentences” in the language). Statements are then
put together to form programs . Here's a simple illustration of how this
works for the example shown earlier in Chapter 1.

27

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

THIS 15 A

PROGRAM. 10 [PRINT] "MULTIPLICATION TABLE FOR 9~ e LNE 5 A
20 |[FOR[K=0 TO 12
30 [PRINT] K3~ TIMES 9 = "5 K#9 BASIC STATEMENT.
40
50

THESE ARE BASIC KEYWORDS,

Each statement is an instruction to the computer. You'll notice that
statements begin with what is called a line number (In for short). This can be
any integer from 1 to 65000 that you choose. The computer then uses the
order of these numbers to determine the order in which to execute (carry out)
the instructions in your statements.

Most programmers use line numbers 10, 20, 30, etc. to leave room for
instructions they may have forgotten. For example, if you add a statement 35
at the bottom of a program like this:

30 PRINT K
40 NEXT K
50 END

35 PRINT ik ek R Kk kKR kkokk ok ok ok k ok ok kkk ok kkk ok ok ok ok kok ok oKk ok ks

the computer will know you want to print a line of asterisks after line 30.
When you LIST this program, you'll find that statement 35 has been inserted
between statements 30 and 40 (a very nice feature!).

HOUR 0: TEN WARM-UP EXERCISES

Before attacking the eight sections of this chapter and studying the details of
how to write programs, it will be helpful to first try a few things informally.
Readers who have had some experience with programming can skip this
section. But if you're new at computing, spend as much time with these
“warm-up” exercises as you wish.

The approach here will be to present the solutions to some simple
problems of the kind that can be studied by imitation. It will soon become
clear that most of these problems are not good examples of what computers
can do. However the basic ideas shown in the solutions will be useful as later

SECTION 2.0 HOUR 0 (TEN WARM-UP EXERCISES) 29

2N

((\\

b R T R L S T P N O T TR A T

building blocks. There won't be any detailed explanation of the key words
used in this section. The idea is to invent your own explanations based on
what happens. The formal explanations will be given shortly, at which time
you can see how well your ideas hold up. Here’s a brief guide to what the key
words used in Chapter 2 are, and where the explanations will be given:

Informally Used in Explanation Given in

Key Words Warm-Up Exercise Section
INPUT 5 2.1
PRINT All Exercises 2.1
IF ... THEN 10 2.1
STOP 10 2.1
GOTO 4 2.1
END All Exercises 2.1
LET 1, 8 2.2
FOR ... NEXT 6 2.3
TAB —_ 2.4
READ —— 2.5
DATA —_— 2.5
RESTORE —_ 2.5
RND and RANDOMIZE ——— 2.6
ON ... GOTO —_—— 2.6
REM —_—— 2.7
GOSUB and RETURN R 2.8
DEF FNK —_—— 2.8
ON ... GOSUB —_— 2.8

As the chart shows, we'll use about ten of the key words informally in
the warm-up exercises. It is strongly suggested that you run each of the
programs given in these exercises. This will be a good chance to become
familiar with the keyboard and output screen (or paper) on your computer.

30

PRODUCT

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

Also feel free to try variations on the solutions given. NOTE: Before typing
in any of these programs, first make sure that the BASIC interpreter is loaded
in your computer.

Exercise 1: Use your computer as a calculator.

Solution: There are two approaches you can try. The first uses direct mode
(also called immediate mode). Try typing the following: (Some versions of
BASIC do not permit direct mode. If this doesn’t work go on to the indirect
approach.)

PRESS CARRIAGE RETURWN,

(
PRINT 498#27 (@) € YOU TYPE THIS LINE.
0}1(3“6 B3 THE COMPUTER PRINTS THIS.

Direct mode statements do not have line numbers. Our example calculates
the product of 498 and 27. To do this problem as an indirect mode program
type the following:

— —_ o
Ve ON SOME COMPUTERS
TYPE ‘'SCR’ INSTEAD OF ' ’
NEW NEW
10 LET X=498
20 LET Y=27
30 PRINT X*Y @) & You TYPE ALL THIS.
40 END
RUN
13446 }@,
OK € THE COMPUTER
PRINTS THIS.

Notice that * means multiply. Similarly + means add, - means subtract, and
/ means divide.

For this example, using indirect mode (with all those line numbers) is
pretty silly. But as you'll soon find, it's the most powerful mode for more
important problems.

Exercise 2: The restaurant bill for three people is $18.45, and they want to
leave a 15% tip. Calculate how much each person should pay.

Solution: Using direct mode type this:

TIP

BOB

SECTION 2.0 HOUR 0 (TEN WARM-UP EXERCISES) 31

PRINT (18.45 + 18.45%.15)/3 (@ <« m
7.0725
OK } < COMPUTER

This tells us that each person owes about $7.07. Notice how parentheses are
used to group the bill and tip together so that both are divided by 3. Using
indirect mode, the program could be written as follows:

NEV €9

10 PRINT (18.45 + 18.45%*.15)/3 @
20 END (@

RUN
7.0725
OK

NOTE: Users with a BASIC that doesn't have “floating point” (decimal)
arithmetic will have to do everything with whole numbers as follows:

— e

PRINT (1845 +1845%15/100)/3 @
707
OK

The answer is 707 cents (which is $7.07).

Exercise 3: Make the computer print some words—say, your name.

Solution: If your name is Bob, you could do this:

NEW

FROM NOW ON WE WON'T
SHOW THE (@) WHICH IS
TYPED AT ENP OF EACH LINE,

10 PRINT "BOB”
20 END

RUN
BOB
OK

o,

32

BOB FOREVER

HINAME

CHAPTER 2 THE EIGHT-HOUR WONDER;

ALL ABOUT BASIC

Exercise 4: That's not very impressive. Make the computer print your name

lots of times.

Solution: That's easy. Watch closely.

o e P N ™
NEW

10 PRINT "BOB”
20 GOTO 10

30 END

RUN

BOB

BOB

BOB

BOB

0K

Rl e ain g

BOB M ;
c < THIS MEANS "CONTROL C'.
BREAK IN 10

Check your manual.

This program will go on ‘forever’ unless you stop it by pressing “control C”.
That means holding down the key marked control, while you simultaneously
press the key for the letter C. The 'break’ message tells you at what line the
program was interrupted. Your computer may not print this message. Also
some systems use something different from control C for interrupting programs.

Exercise 5: Change the preceding program so it prints any name you wish.

Solution: You can do this by using the key word INPUT as follows:

NEW

10 PRINT "WHAT®S YOUR NAME"

20 INPUT Ns
30 PRINT "HI ";N$
40 END

NOTE: ON SOME COMPUTERS
THIS PROGRAM WILL NEED AN
ADDITIONAL LINE —~
& DIM N$(30)

TYPE A SPACE HERE,

THE COMPUTER PRINTS

o e e e e e e ey
e e e D T T

RJN

WHAT"S YOUR NAME

? NONE OF YOUR BUSINESS
HI NONE (F YOUR BUSINESS
OK

| SRS NRINII e NS G i P NE—— e NSRS —

EVERY THING I(NSIDE THE
POTTED LINE., THE 7 15
PRINTED TO TELL YOU
IT'S YOUR TURN 70
TrPE SOMETHING.

YOU TYPE THIS AFTER THE 7
ALSO TrPE @),

SQUARES & CUBES

SECTION 2.0 HOUR 0 (TEN WARM-UP EXERCISES) 33
Notice that you can RUN a program as often as you wish.

Exercise 6: Can you make the computer print lots of numbers— say, the
squares and cubes of the first 50 integers?

Solution: The easiest way is to use the key words FOR and NEXT as
follows:

NEW

18 FOR N=1 TO 5@

280 PRINT N, N#*N, N®*N*N

36 NEXT N

48 END

OK

RUN
i l 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

& 64 5i2

9 gl 729
19 180 1200
i1 121 1331
12 144 1728
13 169 2197
i4 196 2744
15 225 3375
i6 256 4996
17 289 4913
18 324 5832
19 361 6859
20 400 8000
21 441 9201l
22 484 12648
23 529 12167
24 576 13824
25 625 15625
26 676 17576

N,

ETC. UP 7O N =50

Exercise 7: You're a student, and your teacher wants you to calculate the
number of square inches in pizzas of different diameters from 6 to 16 inches.
But you only have 10 minutes before class.

Solution: Help is on the way. Try this:

34

PIZZA

VOTE PERCENT

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

w e S
LIST
10 PRINT "DIAMETER", "SQUARE INCHES"™
20 FOR D=6 TO 16
30 LET R=D/2 <€ START WITH A PIAMETER
40 PRINT D, 3.l416%R%*R OF 6, AND GO UP TO /6.
50 NEXT D €
60 END \ LET RADPIUS BE HALF
OK OF THE DIAMETER.
RUN
DIAMETER SQUARE INCHES NOW PRINT THE DIAMETER,
6 28.2744 AND THEN THE AREA (WHICH
g gg"‘a‘igg IS Pl TIMES RADIUS
9 63.6174 SQUARED).
:(1) 3?'?334 GO BACK TO LINE 20
12 113.0098 AND GET THE NEXT
13 132.733 DPIAMETER,
14 153.938
15 176,715
16 201.062
OK

L™, B e S g~ —

Exercise 8: You're doing a survey of voter preferences on a referendum and
need to calculate percentages. How can this be done?

Solution: Here's one way. Let F mean ‘number of votes for the referendum,’
let A mean 'number of votes against,” and T mean ‘total number of votes.’
Suppose there are 8,198 for , and 7,463 against. Here’s a program to
summarize the results and give percentages:

TYrPE 13
SPACES

TrPE /0
SPACES
HERE.

NEW

10 LET F=8198
20 LET A=7463
30 LET T=A+F
40 PRINT ©

NUMBER PERCENT"

50 PRINT "FOR:eeoess " 3F, F/7T#100;"%"
60 PRINT "AGAINST... A, A/T*100;"2"
70 PRINT “TOTAL # OF VOTERS = ;T
999 END
RUN

NUMBER PERCENT
FOReoosss o 8198 52.3466 2
AGAINST.s. T463 47.6534 %
TOTAL # F VOTERS = 15661
OK

SECTION 2.0 HOUR 0 (TEN WARM-UP EXERCISES) 35

Exercise 9: Suppose the votes had to be recounted. Can you run the same
program again with new numbers?

Solution: Yes. You only need to change two statements. Don't type NEW (or
SCR).

10 LET F=9483
20 LET A=6213

RUN
NUMBER PERCENT
FOR¢sosee s G483 60.4167 3
AGAINST... 6213 39.5833 %
TOTAL # OF VOTERS = 15696
0K
ot e

Exercise 10: Can you add additional statements to make this program even
fancier?

Solution: As long as you don't turn the computer off, or type NEW (or
SCR), your program is still in memory. You can add new statements to the
old program simply by typing them in. We'll illustrate this by adding an
IF...THEN statement, a STOP statement, and two more PRINT statements as
follows:

80 IF A>F THEN 110
90 PRINT "THE WINNER IS “FOR” BY";F-A;"VOTES™

TOTAL # (F VOTERS =
THE WINNER IS “FOR~
BREAK IN 100
OK

B N,

100 STOP
110 PRINT "THE WINNER IS “AGAINST BY";A-F;"VOTES”
RUN
NUMBER PERCENT
FOReooese o 9483 60.4167 %
AGAINST... 6213 39.5833 7

15696
BY 3270 VOTES

THE PROGRAM WAS
INTERRUPTED BY THE
\STOP' AT LINE 100.

Want to see what your improved program looks like? Just type LIST.

36

VOTE WINNER

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

~

LIST

10 LET F=9483

20 LET A=6213

30 LET T=A+F

40 PRINT © NUMBER PERCENT"
50 PRINT "FOReseesse 3F, F/T*100;72"

60 PRINT "AGAINST...";A, A/T#1003"2"

70 PRINT "TOTAL # OF VOTERS = "3T

80 IF A>F THEN 110

90 PRINT "THE WINNER IS “FOR™ BY";F-A3;"VOTES”

100 STOP
110 PRINT "THE WINNER IS “AGAINST™ BY";A-F;"VOTES™
999 END
OK
e, N i, S N W NS ————

That's a pretty fancy program, and it's time to start explaining how it
{and the others in this section) work. So let's now look at the business of
writing programs in more detail.

2.1 HOUR 1*: A PROGRAM TO HELP JUNIOR PASS

ARITHMETIC 101

We'll start out by showing how to write a useful program with only six key
words (in the case of IF ... THEN we should strictly talk about a key word
“pair”). Our application will be an automated addition practice program that
can be both a fun game to play and a painless way to get proficient at
arithmetic.

To understand this program, we suggest you first look at what it does
when it is executed (RUN). This is a good approach to most programming.
It’s better to first think about what you want to happen, and then write the
program (set of instructions) to do it.

By looking at the RUN, you can see that the first thing this program does is
to ask the person running it to type in two numbers. Then the program asks
for the sum of these numbers. If the answer given is correct, the program
prints TERRIFIC! Otherwise it prints NO, NO, NO followed by the right
answer. The program also asks if another problem is wanted. Typing 1
means yes. Typing any other number (like zero) means no.

*Hour 1 is the longest since it has a lot of detail. It's probably best to go through it lightly the
first time, and re-read it more carefully later.

ADDITION PRACTICE

INPUT

SECTION 2.1

HOUR 1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 37

10 PRINT "ADDITION PRACTICE PROGRAM”
20 PRINT "TYPE IN 2 NUMBERS SEPARATED BY A COMMA™

30 INPUT A,B

40 PRINT “WHAT 1S "3A;”™ + "3B;

50 INPUT X ’,

60 IF X = A + B THEN 90 AND HERE'S
70 PRINT “NO, NO, NO =-wow== ANSWER IS "3A + B THE BASIC

80 GO TO 100 PROGRAM

90 PRINT “TERRIFIC!" THAT MAKES
100 PRINT “WANT ANOTHER (YES = 1)7; IT HAPPEN.

110 INPUT Y

120 IF Y = 1 THEN 20

130 PRINT "0.K. ~-- SO LONG.~
140 END

RUN

& / ADDITION PRACTICE PROGRAM

TYPE IN 2 NUMBERS SEPARATED BY A COMMA
? 24,38
WHAT 1S 24 +
TERRIFIC!
WANT ANOTHER (YES = 157 1
TYPE IN 2 NUMBERS SEPARATED BY A COMMA®

38 ? 62

7 57,64
WHAT IS 57 + 64 7 111
NO, NO, NO weewes ANSWER IS 121
WANT ANOTHER (YES = 1)? 0
\.0:K. =~~~ SO LONG.
o, I T e U NI N U

To explain how all this works we'll first explain each of the key words
used. This will take a few pages, and will best be done with some simpler
examples. Then we'll get back to the addition practice program and see how
all the pieces fit together.

First the key words. We'll explain PRINT in a moment, but this will be
easier if we first look at INPUT.

In lines 30, 50, and 110 the key word used is INPUT. The idea of the INPUT
statement is to make a program stop when it reaches that line, print a ? , and
wait for the person running the program to type in (input) some “data”. Data
can be either numbers, or (as we'll explain later in Chapter 4), characters, or
even “words”. But for now they must be numbers, either integers (like 5, 89,
-13) or decimal numbers (like 3.1416 or -.00328). Fractions may not be used.
To input a number like 1/3, type .333333 instead.

INPUT is always followed by one or more variable names (separated by
commas if there are two or more variable names). In our example, the
variable names we have chosen in line 30 are A and B. To see what INPUT
does let’s look at a simpler program first:

38

INPUT

INPUT A,B

PRINT "NUMBERS AND SUM ARE:"
THIS PRINT A, B, A+B
STATEMENT 50 END
CAUSES THE PROGRAM STOPPED HERE
THIS AND WAITED FOR THE PERSON
QUESTION RUN TO TYPE IN -48, -9& FOLLOWED
MARK. BY A CARRIAGE RETURN,
- TYPE 2 NEGATIVE NOS.

7 -48,-92

THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

CHAPTER 2

PRINT "TYPE 2 NEGATIVE NOS."

NUMBERS AND SUM ARE:
-48 -92

This INPUT statement causes the computer to print ? and then wait until
the person running the program types two numbers and a carriage return.
What happens inside the computer after the carriage return is pushed is that
the two memory locations called A and B are set up, and the numbers -48
and -92 are stored in these locations. The situation looks something like the
following:

You TYFE THESE NUMBERS,
FOLLOWED BY A CARRIAGE RETLRN.

COMPUTER

RUN
TYPE 2 NEG.
? -48,-92

NOS .

MEMORY
-48| A
~-921 8

s
o

QUTPUT

C

J

When you type -48, -92, after 7 mark, these two numbers are input to the
computer’s memory. (The computer also “echoes” them on the screen so you
can see what you've typed.)

SECTION 2.1 HOUR1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 39

NOTE: In our example two numbers had to be typed because the INPUT
statement contained two variables. If it had only one variable (like INPUT A)
then you would only type one number. If it had three variables (like INPUT
A,B,C) then you would type three numbers, and so on.

Notice that the name of a memory location is different from the
contents of that location. The name is often called a variable name (or simply
a variable) because the contents can be changed (varied) by a program. Thus
for each memory location, we can envision a picture like this:

L Contents (or value) of A

Variable Name __ A 48—

PRINT If a program statement says: 5 PRINT “A” it means print (or display on a
screen) the letter A. If a program statement says: 25 PRINT A it doesn't
mean print the letter A, but rather to print the contents of memory location
A (which is -48 in our simple example).

If a program says:

40 PRINT A ,B,A+B

it means PRINT the contents of location A, the contents of location B, and
the sum of the contents in location A and B. The commas in the PRINT
statement mean that the contents (numbers, in our example) should be
printed with enough space between them to make the numbers fall into fields
that are 14 spaces wide. A space is allowed for the sign in front of the
number, but + prints as a blank space. We used negative numbers so you
could see the sign.,

TYPE 2 NUMBERS
?-48, -92
NUMBERS AND SUM ARE:
-48 -92 -140
I —— NI e st i s I TN s s s g P

01 23456 7 8 91011121314151617 1819 202122 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55
[T W T N O T N A NN YO N SN TN NN TN NN (N N N NN NN TN TN NN TN NN NN NN NN NN NN DU ONE WU U YO N AU N NN VO NN NN NN NN NN N S U U O S N G
Column Numbers
B I R P S I Yl g, S F e e
FIELD 1 FIELD 2 FIELD 3 FIELD 4

40

OUTPUT
SPACING

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

To make the numbers in a line of output print closer together, you can
use a semicolon instead of a comma. Here’s a simple test program that shows
what happens:

10 PRINT “COLUMN NUMBERS ARE”

20 PRINT 012345 789c00csETCoccosoooccocsccsocasncoacsscsacanse.
30 PRINT

40 PRINT 25,86,994%,102,7582

50 PRINT -25;,-86,-9945,~102,~7582

60 PRINT 25386;9945;3;102;7582

70 PRINT -25;-863-9945;-1023-7582

75 PRINT mcmmmm e c o o o o e o2 2 m 2 o e e o e -
80 END

OK

RUN

COLUMN NUMBERS ARE

0123456789« 00 0 ETCoase oo osvanoscsossosacoocsoonsscnsss

25 86 9945 102 7582
~25 -86 ~9945 -102 ~7582
25 86 9945 102 7582
-25 -86 -9945 -102 -7582

The arrows show where the fields caused by a comma begin. On a
70-column terminal, there are five such fields.

NOTE: The spacing produced by the comma and semicolon in your BASIC
may be different. To find out what they are, run the above test program and
count what you get.

Notice that the “column” numbers used to describe positions across the
output screen {(or across the paper in an output printer) are numbered left to
right starting with 0 (zero). Large printers can have 132 columns. Most
printing terminals have 80 or 72 columns, while TV monitors may be limited
to less (e.g. 40 columns). Also, some systems number the first column as 1.

SECTION 2.1 HOUR 1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 41

Let's now go back to our ADDITION PRACTICE program, and examine
the output PRINT statements to see what else is possible. There are really
five rules to remember about PRINT.

PRINT Rule 1 Anything in quotes is printed exactly as given when the program is RUN.

Example:

10 PRINT “ADDITION PRACTICE PROGRAM”

™~

140 END
Line 10 causes
this output.

RUN

ADDITION PRACTICE PROGRAM

42

PRINT Rule 2

PRINT Rule 3

PRINT Rule 4

PRINT Rule 5

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

When variable names appear in a PRINT statement (not in quotes), the
contents of these locations are printed. For example, if A contains 47, the
statement

10 PRINT A

will cause the number 47 to appear on the output device (not the letter A).

You can mix these two kinds of output (called “items”) in one PRINT
statement. For example, if A = 24 and B = 38,

10 PRINT “WHAT IS ";A;” + ;B

causes the output

WHAT IS 24 + 38

A comma is used between items to place output in separate fields,
usually 14 columns wide. A semicolon is used to cause items to print as close
together as possible, but leaving a space in front for the sign of a number,
and leaving one “trailing” blank after the number. If you want a spacing
different from either of these, there is a special item called TAB that can be
used in a PRINT statement. It will be explained in Section 2.4,

A semicolon at the end of a PRINT statement suppresses the normal carriage
return (and line feed) that usually takes place automatically when the
program is RUN. Look at lines 40 and 50 of the ADDITION program to see

how this works:

40 PRINT "WHAT IS”;A;” + ”;B;
50 INPUT X

If the memory locations A and B contain 42 and 17 respectively, here’'s what
we get when these two statements are executed.

WHAT IS 42 + 177

The question mark came from the INPUT X statement, but it did not appear
on the next line because the normal carriage return was suppressed by the
semicolon at the end of line 40.

Arithmetic combinations of variables and numbers (what are called
“arithmetic expressions”) can be used in PRINT statements. For example you

can say:

200 PRINT “ANS IS";3+(B*B-4*A*(C)/4

SECTION 2.1 HOUR 1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 43

The combination 3+(B*B-4*A*C)/4 is called an arithmetic expression. If
A=5, B=10, and C=2, this statement will produce the output:

ANS IS 18

This is because
34(10*10-4*5*2)/4=
3+(100-40)/4=3+60/4=3+15=18

A Word About Extended BASIC

The explanations so far conform to the minimal standard BASIC defined by a
committee of ANSI (American National Standards Institutes). However there are
several implementations of BASIC that allow extra features. Two of the most
powerful of these are BASIC-PLUS (Digital Equipment Corporation) and Micro-
soft Extended BASIC (Microsoft Company). The latter is now used by microcom-
puter manufacturers such as Radio Shack, Pet, Ohio Scientific, Exidy, Apple,
SOL, Synertek, Rockwell, Atari, and several others. Microsoft BASIC is sum-
marized in Appendix C. However there are a few differences in the way individ-
ual companies implement Microsoft BASIC, so you'll always want to check the
reference manual for your computer. Project 4 on page 96 shows some of the dif-
ferences between ANSI BASIC and extended BASIC. Section 4.1 shows how to
translate some features of extended BASIC into minimal BASIC.

More About Expressions; Operations in BASIC

(a) In BASIC, you can form arithmetic expressions using five operators:

+ is used for addition

- is used for subtraction

* is used for multiplication

/ is used for division

? is used for exponentiation (some systems use **)

Exponentiation means “raise to a power”. For example, 3t4 means “3 to
the fourth power” which is the same as 3*3*3%3.
(b) Expressions can contain both variables and numbers (called constants).

Examples:

ALL ABOUT BASIC

’

THE EIGHT-HOUR WONDER

CHAPTER 2

Each of these three lines

ion

legal BASIC express

15 a

(1+2+3+4)/N
(A+4)/16

(22

B]

-3.213
J14)*.06

17+78

m

ings together and show

ions to group th
For example

in express
ions should be done

Parentheses are used

)

C

(

what order the operat

’

7

11

/3 means 21/3

but 6+15/3 means 6+5

)

(6+15

here are the rules the computer follows

’

When there are no parentheses
FIRST PRECEDENCE Exponent

t.

ions are done next

1rs

are done f

)
ions and d

fany
ions and subtract

(i

ions

t

ia
iplica

15

v

t

SECOND PRECEDENCE Mult
THIRD PRECEDENCE Add

ions are done last

it

ions are done from left to right

All operat

WHEN IN DOUBT

MEANING

USE PARENTHESES TO CLARIFY YOUR

7

el

0

-

.

)
-

0
¢

44

.
...
N wmv

.
o

.
- MM Aw%

END

GOTO

SECTION 2.1 HOUR 1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 45
Let's now explain the remaining key words used in our program.
The END statement is simple to use. It is always the last statement of any

program, and it has no other parts except a line number. Many programmers
use 9999 as the line number for END.

NOTE: Strictly speaking, you don't even need the END statement in many
versions of BASIC. But we recommend using it just in case you try running
your programs on a computer system that requires it.

This is also easy to use. It means that the “execution” of your program
should depart from the usual rule of executing in the order given by the line
numbers, and instead jump (GO TO) a specified line number. Compare these
two examples:

10 PRINT 1 10 PRINT 1
20 PRINT 2 20 PRINT 2
30 PRINT 3 30 GO TO 10
40 END 40 END
RUN RUN
1 1
2 2
3 1

2

1

2

. etc. (forever!)

The GO TO in the second example makes it go on “forever” (of course you
can always pull the plug). This is called an “infinite loop”. On many systems
you can stop such loops by typing “control C” (which means hold down the
key marked CTRL, and then also press the C key). A better way out is to use
an IF... THEN statement, which we'll explain next.

One last comment. You can type either GO TO or GOTO. This is
because BASIC ignores most spaces. However it's good to use spaces
whenever they make programs more readable (to people, not computers).
We'll have more to say about this at the end of Section 2.4.

46 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

IF...THEN and IF...THEN is a set of key words used in what are called “conditional

STOP branching” statements. Such statements are what make programs really
interesting. To explain how this statement works, let's look at a simple
example:

e S RS I N

IF A IS LESS THAN I8, THEN
BRANCH TO LINE 60; OTHERWISE
CONTINUE WITH LINE 40.

LIST

VOTING AGE 10 PRINT "WHAT IS YOUR AGE™;
20 INPUT A

30 IF A < 18 THEN 60 &
40 PRINT "YOU ARE ELIGIBLE TO VOTE."

50 STOP

60 PRINT "YOU WILL BE ABLE TO VOTE IN ";18-A;" YEARS.~
70 END

RUN

WHAT IS YOUR AGE? 12
YOU WILL BE ABLE TO VOTE IN 6 YEARS.

RUN

YOUR COMPUTER MAY
NOT PRINT THIS MESSAGE.

WHAT IS YOUR AGE? 21
YOU ARE ELIGIBLE TO VOTE.
STOP at line 50 €

T P T N g R NS

Statement 30 is the IF... THEN statement. Here’s what it means:

30 IF A<<18 THEN 60

This is the line number

This is the condition that the computer will
being tested. You read execute next if the
it: “A is less than 18", condition is satisfied (true).

“Satisfied” just means that it's tfrue—A is less than 18. If the condition is false
(not satisfied) that is, A is either equal to or greater than 18, then the
computer will simply go on to the next statement. In our example it would go
on to 40. The statement

50 STOP

means that the computer is to stop executing the program at line 50—it
should not go on to the END, but stop right where it is. You can have several

5

SECTION 2.1 HOUR 1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 47

STOP statements in a program, but only one END, which must be the last

statement.
We can illustrate the logical flow of this program with a diagram called

a flow chart.

/ 10 PRINT “WHAT IS YOUR AGE"; /

4

/ 20 INPUT A /

30 IF A<<18 THEN 60

TRUE

¥

60 PRINT “YOU WILL
/ BE ABLE TO VOTE IN”;

ELIGIBLE TO VOTE.” 18-A; “YEARS.”

/ 40 PRINT “YOU ARE

v
(50 STOP) C 70 END)

The most important box in our diagram is the diamond-shaped “decision’
box, which shows the two possible branches or paths the computer can take.
It represents the IF...THEN statement.

Here is how the various conditions are written in BASIC, using the
relations <, >, and =.

7

A<B means “A is less than B”.
A>B means “A is greater than B”.
A=B means “A is equal to B".

You're also allowed to use the following combinations:

A <= B means “A is less than B or A is equal to B".
A >= B means “A is greater than B or A is equal to B".
A <> B means “A is not equal to B".

One last (but very important) thing: the parts of a condition can also be
expressions. All of the following are correct IF... THEN statements:

100 IF A+4 >A-B THEN 120
100 IF X<=B*B-4*A*C THEN 500
100 IF 3*X14<.0001 THEN 400

Relations have the lowest precedence. They are tested only after all
expressions in the condition have been evaluated.

48

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC
Meanwhile, Back at Our Main Example...

Let's now return to our ADDITION PRACTICE program, and show it in
flow chart form. It has two conditional “decision”” boxes, one to decide if the
answer given to the problem is correct, and the other to decide whether the
user wants to do another problem. You'll notice that the GOTQO statement
doesn’t get a box. It's simply written next to the line that shows where the
program “goes to” at that point.

Notice that line 120 branches back to line 20 for another problem only if
Y=1. Any other number input for Y makes the program go to line 130.
Some programmers write line 100 as:

100 PRINT “WANT ANOTHER (YES=1, NO=0)";

Of course, any number except 1 means “No”’.

The best way to follow this flow chart is to start at the top and trace the
arrows. Choose specific numbers for A and B. Trace through the flow chart
for two different answers for X, a correct one where X=A+B is true, and an
incorrect one where X=A+B is false.

NOTE: In addition to the diamond-shaped “decision” box, flow charts use three
other standard shapes. Trapezoidal-shaped boxes (slanted sides) are used to
show both input and output. Sausage-shaped boxes are used to show the start
and end of a flow chart. Rectangular-shaped boxes are used for most other
things (LET statements, mostly).

SECTION 2.1 HOUR 1: A PROGRAM TO HELP JUNIOR PASS ARITHMETIC 49

/ 10 PRINT “ADDITION PRACTICE PROGRAM” /

A 4

20 PRINT “TYPE IN 2 NUMBERS Z
SEPARATED BY A COMMA” /*

/ 30 INPUT AB /

v

/ 40 PRINT “WHAT IS”;A;"+";B; /

k4

/ 50 INPUT X /

60 IF X=A+B THEN 90

TRUE

7

/ 70 PRINT “NO,NO,NO------ / / 90 PRINT “TERRIFICY” /

ANSWER 1S7;A+B

v

GO TO 100 >/ 100 PRINT “WANT
/ ANOTHER (YES=1)";

v

/ 110 INPUT Y /

130 PRINT “OK---
SO LONG”

50

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

2.2 HOUR 2: ADDING A “COUNTER” TO YOUR
PROGRAM; PRINTING SCORES

LET

Something
new
has been

added!

The previous program required the “user” (the person running the program)
to repeatedly answer the question WANT ANOTHER? This could get pretty
tiring for someone who was training for an arithmetic quiz and wanted to do
lots of practice problems. Here's a multiplication practice program that
allows you to say how many problems you want right at the start. It also
prints the percent of correct answers at the end.

10 PRINT “MULTIPLICATION: HOW MANY PROBLEMS”;
20 INPUT N

30 LET R=0

40 LET K=1

50 IF K>N THEN 150

55 PRINT “TYPE IN 2 NUMBERS”;

60 INPUT A,B

70 PRINT “WHAT IS THE PRODUCT”;A;” * ”;B;

80 INPUT X

90 IF X=A*B THEN 120

If X=A*B is not true

100 PRINT “OH, MY! THAT'S . . . WRONG. the program does this.

110 GOTO 140

Y If X=A*B is true
120 PRINT “OH, MY! THAT’S . . . IRIGHT! ,'4— the program does this.
130 LET R=R+1

140 LET K=K+1

145 GOTO 50

150 PRINT “FINISHED: YOUR SCORE IS”;R/IN*100;"%"
160 END

This program uses a new key word, LET.

As you've probably guessed by now, a computer program can't do very
much until data has been stored in the proper memory locations. There are
three ways to do this in BASIC. The first is an INPUT statement that let’s the
person running the program supply this data. The second is the LET
statement which allows the program itself to load data in a memory location
(the third method uses the READ and DATA statements explained in Section
2.5). LET statements are called assignment statements. The statement

10 LET A=54

sets up a memory location called A and then “assigns” the number 54 as its
contents:

CIRCLE AREA

COUNT

SECTION 2.2 HOUR 2: ADDING A “COUNTER” TO YOUR PROGRAM 51

An important feature of the LET statement is that the right side can be any
arithmetic expression. For example here’s a program that calculates the areas
of circles with radii R supplied by the user:

e

LIST

10 INPUT R

20 LET A = 3.1416 * R * R
30 PRINT R, A

40 GO TO 10

50 END
RUN

71 THE USER PRESSED
7110 3.14l6 “CONTROL-C” HERE
Lo 31416 TO INTERRUPT

THE PROGRAM.

Now here’s the most interesting feature of LET. You can have the
variable on the left side of a LET statement become an updated version of its
previous value given on the right side. Watch this:

R I e S

LIST

10 LET K
20 PRINT K3

30 LET K K+ 1

40 IF K <= 10 THEN 20
50 END

1

oxou

RUN

See what happened? K started out as 1. Then it was printed in line 20. Then,
in line 30, K was changed to a 2 (a value equal to its previous value + 1). The
IF...THEN in line 40 makes the whole process repeat until K is greater than
10.

Suggestion: you should always think of the LET statement as doing
what's to the right of the = sign first, and then storing this value in the
variable on the left side. Think of LET K=K+1 as meaning:

K4——— K+1
t t

New K Previous K

52

MULTIPLICATION
PRACTICE

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

The above process is called incrementing K. In our case we increment by 1,
but of course any increment could be used.

Now Back to the MULTIPLICATION PRACTICE
Program

From the discussion of LET, you can now see how our MULTIPLICATION
PRACTICE program works. K is a counter that keeps track of how many
problems are done. When it finally becomes greater than (>) N, the number
of problems which the user wanted to do, the program branches to line 150
and finishes up. Our other counter is R which keeps track of how many
problems the user gets right. R only gets incremented (in line 130) if the
answer X is correct (that is, when the condition in line 90 is true). This makes
the program branch to line 120, followed by line 130 where the incrementing
of R takes place.

The percent of correct answers is printed with the expression R/N*100 in
line 150. For example, if you do 20 problems (N=20), and get 14 right
(R=14), then R/N*100 = 14/20*100 = .7*100 = 70%. Here's a sample RUN
of the MULTIPLICATION PRACTICE program:

LIST
10 PRINT "MULTIPLICATION: HOW MANY PROBLEMS™;
20 INPUT N

30 LET C=¢0

40 LET K=1

50 IF K > N THEN 150

55 PRINT “TYPE IN 2 NUMBERS™;

60 INPUT A,B

70 PRINT "WHAT 1S THE PRODUCT "3A3;" * ";B3;

80 INPUT X

90 IF X = A # B THEN 120

100 PRINT “OH, MY! THAT S seeeece WRONG."

105 PRINT "ANSWER IS ";A#*B

110 GO TO 140

120 PRINT "OH, MY! THAT S ecessse! RIGHT!"

130 LET R=R+1

135 GOTO 50

140 LET K=K+l

145 GO TO 50

150 PRINT "FINISHED: YOUR SCORE IS ";R/N*100;"2"
160 END

RUN

MULTIPLICATION: HOW MANY PROBLEMS? 3
TYPE IN 2 NUMBERS? 23,4

WHAT IS THE PRODUCT 23 * 4 7 92
OH, MY! THAT"S ¢cee.os!RIGHT!

TYPE IN 2 NUMBERS? 27,8

WHAT IS THE PRODUCT 27 * 8 ? 216
CH, MY! THAT S «oseeo.e ! RIGHT!

TYPE IN 2 NUMBERS? 2,3

WHAT IS THE PRODUCT 2 # 3 7 5
OH, MY! THAT S «¢:¢c.0..WRONG.

ANSWER IS 6

FINISHED: YOUR SCORE 1S 66.6667 %

SECTION 2.2 HOUR 2: ADDING A “COUNTER” TO YOUR PROGRAM 53
More About BASIC Variables

This is a good time to answer a question you may have had about what
“names” can be used for BASIC variables. The answer is that in minimal
BASIC a variable can be

(1) Any single letter, e.g., A, B, C, D, ..., Z.
(2) Any single letter followed by a single decimal digit, e.g., A1, A2, A9, B4,
B7, Q7, Q8, 20, Z3, Z4, Z5.

This means that there are 26 + 10726 = 286 possible “legal” variable names
(additional names for “string” variables will be introduced in Chapter 4.)

-

o

THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

CHAPTER 2

54

GETTING THE COMPUTER

2.3 HOUR 3

LOOPS

.
r

TO DO ITS OWN COUNTING

FOR...NEXT

SINGLE LOOP

SECTION 2.3

HOUR 3: GETTING THE COMPUTER TO DO ITS OWN COUNT 55

In the last section we showed the technique of using a counter together with
an IF...THEN statement to control how many times a program executes a
group of statements. This is called “looping” or “iteration”, and it's an
important type of control in programs. There is another way to control
looping that is even simpler. It uses a pair of statements: a FOR statement
together with a matching NEXT statement.

Here are two programs that compare the two techniques for controlling

loops:

Using a Counter

10 LET K =
20 IF K > 5 THEN 60

10 FORK=1TO s
20 PRINT K; K*K; K*K*K

30 PRINT K; K*K; K*K*K 30 NEXT K
40 LET K=K +1 40 END
50 GO TO 20

60 END

Both programs produce the same output:

Using FOR and NEXT Statements

RUN
111
248
3927
4 16 64
5 25 125

As you can see, the second program is simpler. Here's another example
showing how several statements (called the body of the loop) can be
controlled by FOR...NEXT statements:

THIS 15
THE BODY
OF THE
LOOP,

o N ARSI R

SRR e W hae

LIST

10 FOR K=1 TO 3

15 PRINT "LOOP # ";K

20 PRINT “TYPE A NUMBER";
30 INPUT N

40 PRINT "THE CUBE OF YOUR NUMBER IS";N#N#N

50 PRINT <
60 NEXT K
70 END

LOoP # 1
TYPE A NUMBER? 5
THE CUBE OF YOUR NUMBER IS 125

Y

LoopP # 2
TYPE A NUMBER? 15
THE CUBE OF YOUR NUMBER IS 3375

Looep # 3
TYPE A NUMBER? -3
THE CUBE OF YQUR NUMBER 1S-27

THE “PRINT" IN
LINE 50 CREATES
A BLANK LINE,

56 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC
The full form of the FOR statement is

100 FOR K = 1 TO 25 STEP 5
——-(body of the loop)——-
200 NEXT K

The FOR statement really has three key words, FOR, TO, and STEP.
The word STEP is used to say how much K should be incremented each time
around the loop. If STEP is omitted, the STEP size (or increment) is taken to
bel.

Here's an example to show a negative STEP:

LIST

NEGATIVE STEP 10 PRINT "STAND BY FOR AIR TIME"
20 FOR K=5 TO { STEP =l

30 PRINT K; "SECONDS”

40 NEXT K

50 PRINT "YOU'RE ONi1”

60 END

FUN

STAND BY FOR AIR TIME
5 SECONDS
4 SECONDS
3 SECONDS
2 SECONDS
i SECONDS

YO

An important feature of the FOR statement is that variables or
arithmetic expressions can be used after the = sign, and also after TO and
STEP. Here's a simple example showing this feature:

—]
LIST

STARS 10 PRINT "HOW MANY STARS DO YOU WANT TO BE PRINTED";
20 INPUT N

30 FOR K=! TO 2%N

40 PRINT "#°7;

50 NEXT K

60 PRINT

70 PRINT "HA HA--THAT'S TWICE AS MANY AS YOU WANTED."
80 END

HOW MANY STARS DO YOU WANT TO BE PRINTED? 5
4 3 3 3 3 3 3

HA HA--THAT®S TWICE AS MANY AS YOU WANTED.

SECTION 2.4 HOUR 4: PRINTING PATTERNS; PROGRAMMING STYLE 57

2.4 HOUR 4: PRINTING PATTERNS; THE HOT DOG PROBLEM

Let’s start by reminding ourselves of how to use a semicolon to keep printing
on the same line, and how to use a PRINT to “undo” the effect of this
semicolon. Look at the difference between these two programs:

10 FORK=1TO 5 10 FORK=1TO S5

20 PRINT *7; 20 PRINT "7,

30 NEXT K 30 NEXT K

40 PRINT "FINISHED" 40 PRINT

50 END 50 PRINT “FINISHED”
60 END

RUN
RUN

o *FINISHED

* ok ok Kk K

FINISHED

In the second program, the PRINT in line 40 was needed to get a line
feed and carriage return so that FINISHED appeared on a new line.

58

DOUBLE LOOP

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

Now let's get fancy, and use two FOR loops, one inside the other. The
second loop acts like the body of the first, and we say we have nested FOR
loops.

—\W—'—
LIST

10 FOR L=} TO 3
"QUTER LOOP HAS L ="3L

20 PRINT
OUTER, 30 FOR N=1 TO 5
LOOP INNEEJ 40 PRINT "#7;
LOOP Al 50 NEXT N

40 PRINT
70 _NEXT L.
80 END

GUTER LOOP HAS L
EEFRIE A -

CJTER LOOP HAS L
SHE 4 34

OUTER LOOP HAS L

W SR oL

&

i
e

FINNER LooP

PRODUCED
5 ASTERISKS.

]
AV}
%

[
[}

If you think through this program, you'll see that the body of the inner loop
(which is simply line 40) gets executed 15 times. Looking at the asterisks
printed should make this clear. The variable L controls how many lines get
printed (3), while N controls how many asterisks per line (5), so 15 are
printed altogether.

Programs with FOR loops can be made easier to read by using
indentations that show the bodies of the loops. This will be illustrated at the
end of this section. Another technique is to sketch in brackets or boxes that
show the bodies of loops. RULE: Bracket or box lines showing the bodies of
nested loops should never cross. V

Correct FOR A .. . etc. Wrong FOR A .. . etc.
FOR B ... etc. FOR B ... etc.
NEXT B NEXT A
NEXT A NEXT B

Could we have nested, nested FOR loops? You bet. Here's an example

SECTION 2.4 HOUR 4: PRINTING PATTERNS; PROGRAMMING STYLE 59

where N controls the number of asterisks per line, L controls how many
lines, and B controls how many blocks of lines.

LIST
TRIPLE LOOP 10 FOR B=1 T0 3 FUN

20 PRINT "B =";B B =1

30 FOR L=1 TO 4 B P R Sy

40 FOR N=1| E‘O 15 FE R B R R

50 PRINT “#%3 MRG0 3 3F IR

60 NEXT N PP g g

65 PRINT B = o

70 NEXT L 3598 95 36 96 3 9 35 96 26 468 A

80 NEXT B P X T LR

90 END b3 4 6 3 36 369 3 3R 2 3036 46
SRS B
B =3
SRR A 2R 25 AR 96 A 9 B
6346 4E 3 2 4R 96 96 96 95 46 236 3
S 36 960 3 9 BB %
AR 36 R O 29606 63 8

Here’s a trickier version of the above which you should study carefully to
make sure you understand what’s going on.

LIST
VARIABLE LOOPS 10 FOR B=1 TO 3
20 FOR L=1 TO 2%B)
30 FOR N=] TO 2%(L+B) ’,
is L :
40 PRINT “#°; TH TAB E .S‘HOW WHAT'S HAPPENING
S0 _NEXT N B GIVES THE '
60 PRINT BLOCK MU
70 NEXT L \) NUMBER.
75 PRINT 2L GIVES THE
80 NEXT B
INE BER.
90 END L e g
s N GIVES THE
NUMBER OF ASTEERISKS.
N v . y) .
B f NOTE :
R I 2 & THESE ARE
THE (ONTENTS
Wik 2 7/ & OF B, L., AND ¥
S a0 a 2 7 JUST AFTER
3840 96 45 9 45 95 95 3 4 a 3 /0 NPSPaRtsant
R R BB D BB A2 & (2 FPRINTING A
LINE OF
WEEBBE B s i £ ASTERISKS.
Y Y YY) r 3 a2
W 245 8 3 3
T T T X T T T . 3 4
BEBREB BB SRR Y 3 5
P T T T ¥ T g 3 &

60

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

We'll return to the subject of printing patterns later, and show how to make
them more interesting by using random numbers and other tricks.

Let’s switch to another use of nested loops by showing an application to
a fun problem which is also related to the important idea of tree structures.

THE HOT DOG PROBLEM

Suppose your're running the hot dog stand at your next club picnic, and you
decide to post a computer printout showing how to order all the possible
combinations by number. Let's assume that there are only YES/NO decisions
allowed for hot dog, bun, mustard, mayonnaise, and catsup. To discourage
overindulgence, we'll also print a calorie count for each combination.

The way to think about this problem is to picture what's called a
decision tree.

START
///,///" Hot Dog Choice
= ' NO
\Y\E\S Bun Choice

/\ N Y N Etc.

//

K Y N Y N Y N

N
Y BN fy N Y SN Y WN Y SN Y N

This would be a path that says YES for the
hotdog, NO for the bun (!), YES for mustard, etc.

One way to generate a tree structure in BASIC is to use nested FOR
loops, one for each level. Our tree will have five levels (one for each
ingredient) so there will be five FOR loops. Here's how all the paths through
our five-level tree can be tabulated with a BASIC program.

HOT DOG

SECTION 2.4

LIS

10
15
20
30
40
50
60
70
80
90
95
100
110
120
130
140
150

RUN

VR~ U WA -

A R R N e E E E E E T T e, [W N W, W W
—

HOUR 4: PRINTING PATTERNS; PROGRAMMING STYLE 61

T

PRIN

LET
FOR
FOR
FOR
FOR
FOR

T
K
H
B
M
Y
C

PRINT
PRINT H; "
PRINT
LET K=K+
NEXT C
NEXT Y
NEXT M
NEXT B
NEXT H

END

os a0

»e

x

N
a0 v e se

-~ &
o 65 oo os es o

Lo}
e 80 o

w}

ODDDDOCJOC)O

LI U I I

[}

P B b b s bme pu et e ek B pee B e e b D) (O G0 D D D O

TO
TO
TO
TO
TO
#"3K;

OO oe o

"

Lonli == —~ R R i Y = <

30

N MUST . MAYO.
1] 0
0 0
0 1
0 i
i 0
i 0
i i
1 1
0 0

e e P b e e D O D D D LD D D e b b b e g

DOG

” .
2

A

P e B D €D D LD b e e PO D D D T e e e O O OO

BUN

- "
sM;

MUST .

O D e (D O e e O D e b (DD e e o O

RS "3C3
CALORIES=";H*140+B*120+M*20+Y#1 00 +C*30

CATSUP

0

O b D = D o (O e

D e LD ke CD e D e O P ED e D e €D e O e O = (D

MAYO. CATSUP”

WEIGHT WATCHER'S
SPECIAL

CALORIES= ¢
CALORIES= 30
CALORIES= 100
CALORIES= 130
CALORIES= 20
CALORIES= 50
CALORIES= 120
CALORIES= 150
CALORIES= 120
CALORIES= 150
CALORIES= 220
CALORIES= 2590
CALORIES= 1490
CALORIES= 1790
CALORIES= 2440
CALORIES= 270
CALORIES= 1410
CALORIES= 1740
CALORIES= 240
CALORIES= 274
CALORIES= 160
CALORIES= 190
CALORIES= 260
CALORIES= 290
CALORIES= 260
CALORIES= 290
CALORIES= 360
CALORIES= 390
CALORIES= 280
CALORIES= 310
CALORIES= 380
CALORIES= 4190

B i N

The output from this program would be a lot nicer if all the 0's and 1's
(NO and YES decisions) lined up. We can make this happen by using the new
key word TAB.

62

TAB

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

The statement 10 PRINT TAB (12) ;*” will cause the “*” to print in column
12 (don't forget that columns are numbered from left to right starting with
zero). We'll say more about TAB in Chapter 3, and show how using the form

TAB(X) (where X is a variable in your program) can be used to produce
graphical output.

To fix up our hot-dog problem all we have to do is change one line.

e s N I e O e R e Wy

*

70 PRINT "# " ;K;3;TAB(5)": 3

=
z

MAYO. CATSUP

0 CALORIES= 0
CALORIES= 30
CALORIES= 100
CALORIES= 130
CALORIES= 20
CALORIES= 540
CALORIES= 120
CALORIES= 150
CALORIES= 120
CALORIES= 150
CALORIES= 220
CALORIES= 250
CALORIES= 140
CALORIES= 170
CALORIES= 240
CALORIES= 270
CALORIES= 140
CALORIES= 170
CALORIES= 240
CALORIES= 270
CALORIES= 160
CALORIES= 190
CALORIES= 260
CALORIES= 290
CALORIES= 260
CALORIES= 290
CALORIES= 360
CALORIES= 390
CALORIES= 280
CALORIES= 310
CALORIES= 380
CALORIES= 410

DOG BUN

;

VRO U W

90 86 sa s 96 s 68 9o o8 vo oo o8

Sk Sk ¥: W% I Ik R W e W Bk W W Ve M TR J B N W T koW W W W T W W W e W
—
o
s Bt Gk s s Bon Bk B et Gt i s e bt pm M (D O OO OO OO0 OOOOOOO
Pon e e B oo e e b CD D CD €D LD LD €D D B b P e b e B e (D O OO OO OO
Y e e bt €D D D ED P b pm 4 D D D D e b T D D D D e e OO OO
e e CD CD b D CD b bt CD CD e e CD D B e D G b e D D e b O D e e O O
D e D b D b D e D b GO 0 D e D b £ b £ b D e D b D O e D

6s s Be o 48 00 G4 0 ea 96 9s OC 95 08 o8 G0 00 46 0 oo

A Word About Programming Style

Programs should be easy to read. If would also be nice if they were
interesting to read—if they had “style”. Because of the limited vocabulary in
programming languages, it's not too likely that many people will ever curl up
in bed to read programs. But making them more readable is nevertheless an

HOT DOG
WITH TAB

SECTION 2.4 HOUR 4: PRINTING PATTERNS; PROGRAMMING STYLE 63

important goal. The “Little Book of BASIC Style” by Nevison is
recommended as an excellent source of ideas on how to do this.

One technique is to use REMark statements that explain what's going on.
Another is to use spaces and indentation. For example, it is helpful to indent
the body of the FOR loop. When there are nested FOR loops, several levels
of indentation are needed. For the hot dog problem, an indented version
would look like this:

T —
LIST
110 PRINT " ;e DOGe = =BUN===MUST , ~~~MAYO.~~-CATSUP"
115 LET K=l
120 FOR H=0 TO 1
130 FOR B=0 TO |
140 FOR M=0 TO 1
150 FOR Y=0 TO 1
160 FOR C=0 TO 1
170 PRINT “"#";K3;TAB(5);": "3
180 PRINT H;" "B3" " sMs” "sY3” “3GC;
190 PRINT ~ CALORIES=" jH*140+B¥*1 20 +M#20+Y*1 00+C*30
195 LET K=K+]
200 NEXT C
210 NEXT Y
220 NEXT M
230 NEXT B
240 NEXT H
250 END
SEREESSEE e S T W N

Since it's difficult to type an indented version of a program, special
“formatting” programs are sometimes used to do the indenting automatically.
However you'll also find that some computer manuals advise not using
indentation. The reason is that the extra spaces needed increase the size of
programs, and also slow down their execution. So youll see some
microcomputer programmers going in the opposite direction, and writing
things like this:

10FORX=1TON:PRINTX:NEXTX

This is efficient for the machine, but atrocious for human readers.

The programs in this book were run on microcomputers with limited
memory, so fancy indentation wasn't possible. To improve readability, we've
used balloons, brackets, and other extra notations instead. More complicated
programs have been broken into segments which are distinguished by
REMark statements with easily spotted dashed lines.

64 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

An example of using external brackets to distinguish the nested FOR
loops in the hot dog problem is as follows:

THESE FIVE LOOPS

RUN THROUGH ALL — e
POSSIBLE CHOICES
OF INGREDIENTS, y LIST
BRACKET 10 PRINT " DOG BUN MUST. MAYO. CATSUP”
15 LET K=1
- bos ook 20 FOR H = 0 TO |
. 30 FOR B = 0 TO 1
— MUSTARD Loop —J) Co% 5 = 0 1o
— MAYO. LOOP ——_ N
Sy 50 FOR Y = 0 TO 1
CAT LOOP—4y FOR C = 0 TO I

70 PRINT "#";K;"~ H

30 PRINT H; "~ 3Bs” TsMy TsYs” "3Cs

90 PRINT ~ CALORIES="3H#*140+B*120+M*20+Y*1 00+C#30
95 LET K=K+1
100 NEXT C
110 NEXT Y
120 NEXT M
130 NEXT B
140 NEXT H
150 END

THIS 1S THE BODY OF THE
LOOPS. IT PRINTS ONE
LINE EACH TIME IT's
EXECUTED,

(@) O, O, O, O, O, O, () O, O, O, O, O, O,

Programming with Style
9] An example of a program written with particular attention to style and
readability is shown on page 145 as part of project 3. The programs in sections
Q) 4.2 and 4.3 of chapter 4 are examples of additional ways to style a program. As (0
you start to write longer programs, it is recommended that you try your hand at
developing a style of your own derived from these and other examples you have (7
seen,

0

(o) (&) (&) o O (&) O (&) (&) O (&) (=) O elo"O

SECTION 2.5 HOUR 5: SHELF LABELS AND BATTING AVERAGES 65

2.5 HOUR 5: SHELF LABELS AND BATTING
AVERAGES

The word is out. You're the first one on your block with a computer and the
calls are starting to roll in. First the butcher, then the baker, and now—-the
local sports writer. Seems he needs to crank out a list of batting averages
fast, his calculator is broken, and he never did understand long division.
Meanwhile, the corner grocer wonders if you could maybe print him
unit-price tags of the kind used in supermarkets. Is there a simple way to
handle both requests?

66

READ...DATA

BATTING AVERAGES

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

One way to kill several birds with one stone in the world of computing is to
realize that different programs may have similar structures, differing mainly
in the data they use. For this reason, it would be nice if the data could be
kept more or less separate from the program itself. This also makes it easier
to expand or revise data later on. Here's how this idea works in BASIC for
the batting average problem:

e e N ™

LIST

10 PRINT “"PLAYER #","AT BAT","HITS", "BAT.AVG."
20 READ N, B; H

30 PRINT N, B, H, H/B

40 GO TO 2¢

50 DATA 1, 50, 19
60 DATA 2, 43, 10
70 DATA 3, 51, 13
80 DATA 4, 49, 17

WHEN ROUNDED TO THREE
DECIMAL PLACES, THIS RATIO
GIVES WHAT BASEBALL FANS
CALL A ‘BATTING AVERAGE’

90 END

RUN

PLAYER # AT BAT HITS BAT.AVG.
1 50 19 .38

2 43 10 . 232558
3 51 13 «254902
4 49 17 « 346939

QUT OF DATA at line 20

S, - ST W aa WIS gy

When this program reaches line 20, it is told to READ enough data to load
the variables N, B, and H. So it looks for a DATA statement (which it finds
at line 50), and “uses up” the first three pieces of data it finds. You can think
of what happens as follows:

20 READ N, B, H

oD

You should also picture this data as having been “used up”:

50 DATA ¥, 50, ¥

The program next prints a line of output (line 30), and then does a “GO TO
20". This means it again reads data, but starting with the first “fresh”
(unused) piece of data it can find. In our example, this is found at line 60, so
the second time around our loop we have:

SHELF LABELS

[rm—— i

SECTION 2.5 HOUR 5: SHELF LABELS AND BATTING AVERAGES 67

20 READ N, B, H

wo B

This process continues until no more “fresh” data can be found, at which
time an “out of data” message is printed. IMPORTANT: The data can be
distributed over DATA statements any way you wish, provided it is in the
order expected by the READ statement. For example, lines 50, 60, 70, and 80
could also be written as two statements:

50 DATA 1, 50, 19, 2, 43, 10
60 DATA 3, 51, 13, 4, 49, 17

or even as one statement:

50 DATA 1,50,19,2,43,10,3,51,13,4,49,17

Actually, a program always treats all data as one big list. The READ
statement simply goes down the list, “eating up” the data in “gulps”. In our
example, each “gulp” consists of three numbers, and it's up to you to make
sure the groups of 3 correspond to N, B, and H.

Here's a similar program for our grocer friend. All we have to do is
change our interpretation of what the variables mean, and use data
appropriate to grocery prices. We'll also print things a little differently so the
grocer can actually cut up the output to make shelf labels.

LIST

T 1 T

10 READ N, @, P
20 PRINT “PRODUCT #","QTY.IN 0Z.” ,"PRICE","UNIT PRICE"
30 PRINT N, Q, P, 100%P/Q3 "“CENTS PER 0zZ.”

40 GO TO 5

50 DATA 1, 15, 1.29; 2, 4, .69, 3, 32, 2.49

60 END

RUN

PRODUCT # QTY.IN 0Z. PRICE UNIT PRICE

1 i5 1.29 8.6 CENTS PER 0Z.
PRODUCT # QTY.IN 0Z. PRICE UNIT PRICE

2 4 <69 17.25 GCENTS PER O0Z.
PRODUCT # QTY.IN 0OZ. PRICE UNIT PRICE

3 32 2.49 7.78125 CENTS PER OZ.

OQUT OF DATA at line 10

68 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC
Improving These Programs

One of the nice things about writing programs is that once the basic idea is
up and running, it's easy to add improvements. For example, both of the
above programs suggest several kinds of additions. We'll describe five of
these, and illustrate the last three.

(a) Limit the number of decimals to what people expect: .367 instead of
.366666 for a batting average, 13.5 cents instead of 13.49999 for a unit
price. There are two ways to do this. One uses the INT function which
will be explained in Section 2.7. The other uses PRINT USING, explained
in Chapter 3.

(b)It would be nice to have words or names printed instead of product or
player numbers. The best way to do this is to use string variables,
explained in Chapter 4

(c) It would be convenient to allow grocery data to be given in both pounds
and ounces. This is easy to do. Here's one way:

20 READN, L, Z, P

25 LET Q=16*L + Z

°

This means 15 oz.

50 DATA 1,2,7,1.31,2,0,15, .89

K—T——J

We agree that this means product #1
contains 2 lbs. 7 0z. and costs

$1.31. Statement 25 then converts
Q to 39 oz.

(d) The “out of data” message terminates the program. But suppose we want
the program to continue and do other things? How do we handle this?
(read on!)

(e) We may also want a program to re-use data that's been “scratched out”.
How do we “restore” such used-up data?

Here's a revision of the batting average program that answers both of
these questions:

SECTION 2.5 HOUR 5: SHELF LABELS AND BATTING AVERAGES 69

LIST

BATTING GRAPH 10 PRINT "PLAYER # CLASS AT BAT HITS BAT.AVG."
20 READ N, C, B, H

30 IF N = 0 THEN 110

40 PRINT N; TAB(10);

50 IF C = 0 THEN 90

60 PRINT “VETERAN";

70 PRINT TAB(18);B;TAB(27)3;H;TAB(34);H/B
80 GO TO 20

90 PRINT "ROOKIE™;

100 GO TO 70

110 RESTORE ==

115 PRINT

120 PRINT “BAR GRAPH OF PLAYER BATTING AVERAGES"
130 READ N, C, B, H

140 IF N = 0 THEN 220

150 PRINT “PLAYER #";N;

160 FOR K = 1 TO 100*(H/B+.005
170 PRINT “"#";

180 NEXT K

190 PRINT

200 GO TO 130
210 DATA 1,0,50,12,2,1,49,18,3,1,51,17;4,0,43,15,0,0,0,0

HERES WHERE THE DATA
POINTER GETS SET BACK
To THE FIRST ITEM.

THIS EXPRESSION CONVERTS
AN AVERAGE OF .24 TO a4
ASTERISKS , .367347 70 37
ASTERISKS, ETC.

)
J

220 END

RUN

PLAYER # CLASS AT BAT HITS BAT . AVG.
i ROOKIE 50 12 24
2 VETERAN 49 18 « 367347
3 VETERAN 51 17 .333333
4 ROOKIE 43 15 - 348837

BAR GRAPH OF PLAYER BATTING AVERAGES
PLAYER # 1 0304830 383 303 530 30 3030903090 330 36 3 36 30 36 35

PLAYER # 2 33363345 3030 30303030 3630 48 303030 3030 3030 3030 3 3 B R H A S %
PLAYER # 3 333 3 3536 3 3t 35 30 36 38 36 36 30 4038 30 36 3635 46 36 30 30 3038 3040 3036 300
PLAYER # 4 3 3% 4830 38 3 35 36 38 30 36 36 36 3638 36 3030 4640 3090 3030 2090 30 30 S0 30 300 30 3

In this program the data is read in groups of four. The second data item
in each group of four is a code, with 0 meaning “rookie” and 1 meaning
“yeteran”. For example, the statement

DATA 1, 0, 50, 12

means that player #1 is a rookie (0) who was at bat 50 times and got 12 hits.
Line 50 tests C to see what the code is, and then branches to the appropriate
PRINT statement.

70

RESTORE

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

The revised batting average program uses the DATA in line 210 twice. The
first time it's used to produce a table of batting averages. This is done in lines
10 to 100. This part of the program keeps looping back to line 20 to get new
data. But the fifth time this happens, it finds the “phoney” data 0,0,0,0. We
agree that storing a zero in N signals the end of data. The signal is picked up
in line 30 which then causes a branch to the second part of our program (the
bar graph routine from lines 120 to 200).

IMPORTANT: Even though we only need one zero in N to signal end of data,
it is essential that four zeros be put at the end of the data statement. This is
because the READ statement has four variables to fill, and will squawk with an
error message if it doesn't find four data items.

Now you can see what the special statement 110 RESTORE does. The
first part of the problem “uses up” all the data. (What happens is that a
“pointer” moves along the data to keep track, and when the pointer gets to
the end of the list, the program knows it's “out of data”.) The RESTORE
statement resets this pointer back to the first data item. Now all the data can
be used again. (Of course, re-running a program also resets the pointer, but
that doesn't help in our example because we would never reach the bar graph
part.)

SECTION 2.6 HOUR 6: COMPUTER GAMES OF CHANCE 71

2.6 HOUR 6: COMPUTER GAMES OF CHANCE

INT

“What a pity this isn't a sin!” Those are supposed to be the words of the
novelist Stendahl upon tasting ice cream for the first time. They sound more
like the utterance of a computer center director trying to find a rationale for
evicting the game-playing devotees who clutter up his system.

But personal computers are a different story, and the wages of gaming
on your own system are an intellectual refreshment that comes in more
flavors than found in all the ice cream stands ever franchized.

This section explains the features of BASIC that help make this endless
variety possible. We'll start by first answering one of the questions we raised
in the last section: How do you make a number like

343687 print as .344 7
or .264689 print as 26.46 1
or .891246 print as 89 7

One way to control the number of decimal places in a number is to use the
INT function of BASIC. If a statement says

10 LET Y = INT(O

the INT(X) part means that X is to be first “processed” by something called
the INT (integer) function. What comes out of the processing is the integer
just to the left of X on the number scale. Here are some examples:

72 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

If: ———— U=-2.003 W=-0.5 Z=0.05 X=1.5 Y=2.999

- I
)

+ :
3 2 1'\ 0

Then: INT(U)=-3 INT(W)=-1 INT(Z)=0 INT(X)=1 INT(Y)=2

|
|
2 3

The following program shows some more examples of the differences

between X and INT(X)
[——— e
LIST
INT DEMO 5 PRINT X", "INT(X)>", "X/3", "INTCl00%X/3)"
10 FOR X = -2 TO 2 STEP .5
20 PRINT X, INT(X)>, X/3, INTCI00%®X/3)>
30 NEXT X
40 END
RUN
X INT(X) x/3 INTC100#X/3)
-2 -2 - 666667 -67
~-1.5 -2 -5 -50
-] -l -6 333333 -34
- 3 -] - 166667 -17
0 g 0 0
«5 0 + 166667 16
i 1 2333333 33
1.5 1 5 590
2 2 666667 66

To use INT for getting an answer in dollars and cents with only 2
decimal places (remember the UNIT PRICE program?) we can use the
expression INT(100*X)/100. That's because

if X= 1.36782
then 100*X = 136.782
and INT(100*X) = 136
SO INT(100*X)/100 = 1.36

To change a batting average to three decimal places we can use a similar

trick:
if A= 367891
then 1000*A = 367.891
and INT(1000*A) = 367

S0 INT(1000*A)/1000 = .367

SECTION 2.6 HOUR 6: COMPUTER GAMES OF CHANCE 73

One more thing. To round this answer “up” in the third decimal place, use
INT (1000*A + .5) / 1000 = .368

Meanwhile, back at the Casino

RND One feature no computer language should be without is a random number
generator. This is a built-in routine that produces a “surprise” number each
time it's used. When a statement like

10 LET X=RND{0), or on some machines 10 LET X=RND(1)

is executed, a number between 0 and 1 is produced “randomly”, and stored in
X. Here's a simple test program you can use to see what these numbers look

like in your BASIC.

—————W-v—v-—\/——v—\/ww—v—

LIST
RND DEMO 10 PRINT “RANDOM NOS. WITH VARIOUS MULTIPLIERS”

20 FOR K = 1 TO 10

30 LET X = RND(()»

40 PRINT X, 10%X, 100#*X, INT(100%*X)>

50 NEXT K

60 END

RUN

RANDOM NOS. WITH VARIOUS MULTIPLIERS
. 771027 7.71027 77,1027 77
. 78183 T.8183 78.183 78
- 75174 T.5174 75.174 75
473969 4.73969 47.3969 a7
. 781555E~1 . 781555 7.81555 7
203217 2.03217 20.3217 20
5159 5.159 51.59 51
266449 2.66449 26.6449 26
955597 9.55597 95.5597 95

.335541 3.35541 33.5541 33

THIS STRANGE NUMBER
1S 0781555 IN PiISGUISE

74

SIMPLE RULE #1

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

NOTE: Your version of BASIC will probably produce a different sequence of
random numbers, but the general idea is the same. Also, RND(0) may have to
be changed to RND(1) in some BASIC's. (In standard BASIC the argument—
the number in parenthesis—is ignored, but in other versions it's got to be as
specified in the user manual.)

Each time RND is used in line 30, a small sub-program in BASIC is used to
generate a new number from the previous one. So strictly speaking, the RND
numbers are “deterministic” (because they are determined by known formulas).
In practice, however, these formulas produce numbers between 0 and 1 that
don't seem to follow any predictable pattern. So they are often called “pseudo-
random numbers uniformly distributed between 0 and 1.”

Constants in BASIC

The numbers used in BASIC programs are called constants. So far we have
used,

(1) Integer constants like -3, 4, 27893, and
(2) Floating point (or real) constants like .0831, 3.1416, and -896.28.

Another way to write a floating point constant is shown in the first column
of the preceding test program where the number .781555E-1 appears.

This is called the “exponential’ or “scientific’ notation for writing
constants. What .781555E-1 really means is

.781555 * 10*
But 10"* means 1/10' (remember, 10' = 10), so this number is really
(.781555) * (1/10) = .0781555. Similarly,

.781555E-2 = 781555 * 10" = .00781555, and
.781555E-3 = .781555 * 10-% = .000781555, and so on.

E-3 means “move the decimal point 3 places to the left.”
.781555E-3 = .000781555

Scientific notation is used to save space when representing very small
and very large numbers. (You can see that .781555E-10 takes less room to
print than .0000000000781555.)

A similar notation is used to represent large numbers. For example,

.8965E+1 means .8965 * 10" = .8965 * 10 = 8.965
.8965E+2 means .8965 * 107 = .8965 * 100 = 89.65,
.8965E+3 means .8965 * 10° = .8965 * 1000 = 896.5,

SECTION 2.6 HOUR 6: COMPUTER GAMES OF CHANCE 75

and so on. Here, the space saving shows up for very large numbers. For
example,

.8965E+18 = 896500000000000000.

SIMPLE RULE #2 E+18 means “move the decimal point 18 places to the right”.

Simulated Craps

Now let’s get back to the use of RND by writing a program to play craps.
The usual rules for this dice game can be summarized in flowchart form as
follows:

CRAPS FLOW CHART

ROLL TWO DICE

2,3,12
(“snake
eyes”,“craps”,

“boxcars”)

4,5,6,8,9,10

YOU WIN YOU LOSE THE NUMBER ROLLED
BECOMES YOUR “POINT”
J X J ,
ROLL TWO DICE
“crapped out”
DOES
.

ROLL = YOUR POINT?
YES ~—_

76

CHAPTER 2 THE EIGHT-HOUR WONDIER; ALL ABOUT BASIC

To write a program that simulates playing this game, we'll need two
statements that simulate the roll of two dice by producing random integers
from 1 to 6. The statements

30 LET D1 = INT(6*RND(0) + 1)
40 LET D2 = INT(6*"RND(0) + 1)

do this because RND(0) produces numbers from 0 (zero) up to (but not
including) 1. So for six decimal places we'd have:

Lower Value Upper Value

RND(0) produces .0000000 to .999999

6"RND(0) produces .000000 to 5.999994

6"RND(0)+1 produces 1.000000 to 6.999994
INT(6*RND(0)+1) produces 1 to 6

Thus both D1 and D2 produce integers from 1 to 6. Mathematicians say this
by writing that 1 <= D1 <= 6 and 1 <= D2 <= 6.

Note for Statistics Buffs: Tossing 2 dice with six sides gives numbers with a
total value from 2 to 12. But you will not get the same effect by using a “super
die” with 11 sides as follows:

10 LET D = INT(11*RND(0) +2)

It's true that this statement will produce random integers from 2 to 12, but they
will not show up with the same distribution you get from adding the results of
tossing two 6-sided dice. For example, with one “super die”, the number 7 will
show up 1/11 of the time. But with two regular dice, the number 7 can be
formed in six different ways, each of which shows up 1/36 of the time. So on
the average, a 7 will show up 6*(1/36) = 1/6 of the time, not 1/11.

General Formula for Transforming RND

As just shown, the formula INT(6*RND(0) + 1) transforms the random
numbers so that they fall in the interval 1 <= X <= 6. To generate random
numbers in the range A <= X <= B use the formula

INT({B-A+1) * RND(0) +A)
Examples: To generate integers from 50 to 85 use:

20 LET X = INT(36*"RND(0) + 50)

SECTION 2.6 HOUR 6: COMPUTER GAMES OF CHANCE 77
To generate two-place decimals from .50 to .85 use:

20 LET X = INT(36*RND(0) + 50)/100

To generate integers from -90 to +80 use:
20 LET X = INT(171*RND(0) - 90)

Returning to the CRAPS program, here's a listing followed by a sample

run:
LIST
CRAPS 5 RANDOMIZE
SIMULATION 10 PRINT "SIMULATED CRAPS GAME--YOU START WITH 5107

20 LET D = 10 €
30 PRINT "HOW MUCH DO YOU WANT TO BET";
40 INPUT B

P WILL KEEP TRACK
OF DOLLARS YOl HAVE.

50 LET D1l = INTC(6#RND(O) + 1) FIRST RO
60 LET D2 = INT(&6¥*RND(0) + 1) LL OF DICE.
70 LET Rl =Dl + D2 €

75 PRINT "ROLL IST;RI
80 IF R1=7 THEN 200
90 IF RI = |1 THEN 200

REMINDER : FOR MANY MACHINES (.., THE
APPLE II) RND(0) SHOULD BE CHANGED TO RND(1).

100 IF R1 = 2 THEN 170
116 IF Rl =3 THEN 170 NEXT ROLL OF DICE.
120 IF Rl = l2 THEN 170

130 PRINT “YOUR POINT IS7;RI
140 LET R2 = INT(6*RND(0) + 1) + INT(6#RND(O) + 1)
145 PRINT “NEXT ROLL IS";R2
147 1IF R2=7 THEN 1790

150 IF R2 = Rl THEN 200

160 GOTO 140

170 LET D = D - B €
180 PRINT “TOUGH--YOU LOSE. YOU NOW HAVE $73D
190 GOTO 220

200 LET D = D + B € You WON, S0 YOUR
210 PRINT "YOU WIN! YOU NOW HAVE $7 3D BET 1S ADDED To D.
220 PRINT "WANT TO PLAY AGAIN (1=YES)>";

230 INPUT A

240 IF A = | THEN 30

250 PRINT "YOU ENDED WITH $7;Dj
260 IF D>10 THEN 290

270 PRINT “WON'T YOU EVER LEARN?T
280 3TOP

290 PRINT “TALK ABOUT LUCK!"™

300 END

You LOsT, 50 YOUR
BET 1S SUBTRACTED
FROM D.

This version of the program has been written to make each statement as
simple as possible. Questions 5 and 6 of the Self-Test section coming up make
some suggestions for shortening the program. Here’s a run of the craps
program. Your program may give different dice rolls because it has a
different random number generator.

78

RANDOMIZE

ON...GOTO...

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

RUN

SIMULATED CRAPS GAME-~~-YOU START WITH 5190
HOW MUCH DO YOU WANT TO BET? 2

ROLL IS 10

YOUR POINT IS 10

NEXT ROLL IS
NEXT ROLL IS
NEXT ROLL IS
NEXT ROLL IS
NEXT ROLL IS
NEXT ROLL IS
NEXT ROLL IS
TOUGH--YOU LOSE. YOU NOW HAVE $% 8§

WANT TO PLAY AGAIN (1=YES)>? 1

HOW MUCH DO YOU WANT TO BET? 4

ROLL IS 8

YOUR POINT IS 8§

NEXT ROLL IS 5

NEXT ROLL S 7

TOUGH--YOU LOSE. YOU NOW HAVE $ 4

WANT TO PLAY AGAIN (1=YES)>? |

HOW MUCH DO YOU WANT TO BET? 8

ROLL IS 3

TOUGH--YOU LOSE. YOU NOW HAVE $-4

WANT TO PLAY AGAIN (l=YES)>? 0

YOU ENDED WITH $-4 WON°T YOU EVER LEARN?
STOP at line 280

N0

If you run the craps simulation program several times, you may find that the
rolls of the dice are the same for each run. This is because RND(0) always starts
with the same “seed” value, and produces each new number with the same algo-
rithm. This repeatability is very helpful for debugging programs.

To make the numbers really surprise you, there is a feature in most
versions of BASIC that creates a new seed number for each run. All you have
to do to get this feature is to start your program with the statement

5 RANDOMIZE or 5 RANDOM

To see what happens, run the craps program twice with RANDOMIZE, and
twice without.

NOTE: Some versions of BASIC don't have a RANDOMIZE. Their normal way
of operating is to give you a different sequence of random numbers on each run.
For these systems, if you want the same sequence of random numbers on each
run, you must put a statement like 5 Z=RND (-1) at the beginning of the pro-
gram.

This is sometimes called the “computed GOTQ"” statement. It branches to
different line numbers, depending on the value of a variable placed right after
the word ON. Here's a program that demonstrates how it works:

QUIZ

HICCUP

SECTION 2.6 HOUR 6: COMPUTER GAMES OF CHANCE 79

LIST

IF A=1, GO TO 50
IF A=2, GO TO 70

10 PRINT "QUIZ: WHO WAS THE 4TH MARX BROTHER?™
IF A=3, GO TO 90

20 PRINT "1 = ZIPPO, 2 = HARRY, 3 = ZEPPO"
30 INPUT A ¥ &
40 ON A GO TO 50, 70, 90 %
50 PRINT "NO, YOU'RE THINKING OF A CIGAR LIGHTER~--TRY AGAIN."
60 GOTO 30

70 PRINT "YOU MAY BE WILD ABOUT HARRY, BUT THAT"S NOT RIGHT."
71 PRINT "TRY AGAIN.,”

80 GOTO 30

90 PRINT "BY GEORGE YOU'VE GOT IT!t!”
100 END

Ready

RUN

QUIZ: WHO WAS THE 4TH MARX BROTHER?

1 = ZiPPO, 2 = HARRY, 3 = ZEPPO

? 2

YOU MAY BE WILD ABOUT HARRY, BUT THAT®S NOT RIGHT.
TRY AGAIN.

21

NO, YOU RE THINKING OF A CIGAR LIGHTER--TRY AGAIN.
? 3

BY GEORGE YOU"VE GOT IT!!

Here's a program that uses RND with ON...GOTO... to generate
random messages. If you analyze the output, you can see that RND must
have produced the integers 4, 4, 4, 2, 1, 1, 3, 2, 4, 2 which caused branches
to lines 100, 100, 100, 60, 40, 40, 80, 60, 100, 60.

LIST

5 RANDOMIZE

10 FOR N=1 TO 190

20 LET K=INT (4%*RNDC0>+1)
30 ON K GO TO 40, 60, &0, 100
40 PRINT "HEE-"3

50 GO TO 110

60 PRINT "HA-";

70 GO TO 1190

&0 PRINT "HIC-";

90 GO TO 110

100 PRINT "HO-"3

110 NEXT N

120 END

RUN

HO0-HO~-HO-HA~HEE -HEE-H IC -HA~HO-HA -

N e N

80 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

SECTION 2.7 HOUR 7: PROGRAMS TO HELP PASS ARITHMETIC 81

2.7 HOUR 7: PROGRAMS TO HELP MOM AND DAD PASS ARITHMETIC 102

ABS

Very few people who have “taken” a foreign language in school are fluent in
its use. Little children from countries where that language is spoken do a lot
better, and with far less fuss. The same is true of the “languages” of
mathematics and science. Achieving fluency in their use is much easier in
settings where they are spoken regularly.

Personal computers make it possible to create such settings in some very
interesting ways. One of the best involves computer game programs, and
there’s an entire chapter on games coming up. In this section we'll help
prepare the way by explaining some of the techniques used in writing
number-oriented games.

ABS(X) is a function which “processes” X in a very simple manner. It merely
changes the sign of X to +. This is useful when we want to check how close
some INPUT data supplied by the user comes to another value (say, the one
the program expects). The ABS (absolute value) function helps by giving the
“distance” between the two numbers . For example,

)
)
) —
)

I

L3 W W W

3
5
5 -
2

U N WL

As you can see, ABS tells us that in all of these cases, the distance between
the numbers is 3. Here's an example using this feature:

82

NUMBER GUESS

APPROXIMATE

ARITHMETIC

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

R I e T I I T M
LIST

3 RANDOMIZE
5 FOR K=1! TO 3

10 LET R = INT(I0 * RNDC(3) + 1D
20 PRINT "PICK A NUMBER FROM I TU 1073
30 INPUT N <€
4) IF R = N THEN 1138

50 PRINT "NO, YOU MISSED BY";ABS(N - R)
60 PRINT “TRY ONE MORE TIME. NUMBER IS™;
70 INPUT N

80 IF R = N THEN 110

90 PRINT "YOU BLEW IT. THE NUMBER WAS™;R
100 GOTO 1290

110 PRINT "RIGHT111"

120 NEXT K

130 END

THIS IS THE COMPLTER’S
NUMBER

YOUR NUMBER.

THIS IS

THIS GIVES THE AMOUINT
BY WHICH N MISSED,
BUT NOT THE SIGN.

RUN

PICK A NUMBER FROM | TO 107 5
NO, YOU MISSED BY 3

TRY ONE MORE TIME. NUMBER I57 &
RIGHT!!!

PICK A NUMBER FROM | TO 107 |
NO, YOU MISSED BY 7

TRY ONE MORE TIME. NUMBER IS5? 8
RIGHT! !¢

PICK A NUMBER FROM 1 TO 10? 140
NO, YOQU MISSED BY 2

TRY ONE MORE TIME. NUMBER IS7?
RIGHT! !}

WITH THESE <CHOICES
YOU CAN ALWAYS GET
IT ON THE Zwo CHANCE.

P,

Another use of ABS is for accepting input that is “close enough” even
though not exactly the number expected. The art of getting such “ball park”
estimates is seldom taught in school, yet it's a valuable one. Here's an
example of a program for practicing this:

S e e I e S NP
LIST

3 RANDOMIZE
5SFOR K= 1TO0O 10

10 LET H = INT(4000 * RND(CO> + 1200>/100
20 LET M = INTC1000 * RND(O> + 50057100
30 LET I = INT(300 # RND(O> + 300>/100
40 LET D = INT(9 # RND(O) + 1)

50 PRINT "APPROXIMATELY HOW MUCH SHOULD YOU BUDGET"
55 PRINT "FOR A TRIP OF";D;"DAYS IF--"

60 PRINT ~ HOTEL COST PER DAY = 3$";H
70 PRINT ~ MEAL COST PER DAY = $"3M
80 PRINT ° INCIDENTALS PER DAY = $7;I
90 INPUT a

100 LET C D % (H+ M=+ I

110 LET E = ABSC(A - O

120 IF E/C < .10 THEN 160

130 PRINT “YOU MISSED BY $";E

140 PRINT “YOU WERE OFF BY";(E/C>#100;"4"

150 GOTO 180

160 PRINT “VERY GOOD. YOU WERE OFF BY $7;E

170 PRINT "THAT WAS AN ERROR OF ONLY 3(E/C)#100;"2"
180 NEXT K

190 END
S e e I WU T T N —

SECTION 2.7 HOUR 7: PROGRAMS TO HELP PASS ARITHMETIC 83

RUN

APPROXIMATELY HOW MUCH SHOULD YOU BUDGET

FOR A TRIP OF 5 DAYS IF--
HOTEL COST PER DAY = $ 42.84
MEAL COST PER DAY $ 12.81
INCIDENTALS PER DAY 5 5.25

? 60

YOU MISSED BY $ 244.5

YOU WERE OFF BY 80.2956 2%

APPROXIMATELY HOW MUCH SHOULD YOU BUDGET

FOR A TRIP OF 3 DAYS IF--

TH!S SHOULD HAVE BEEN
DONE MENTALLY LSING
Y3+13+5=¢67T x5 =305,

Hou

HOTEL COST PER DAY = $ 15.1l2
MEAL COST PER DAY = 35 7.03
INCIDENTALS PER DAY = 3% 4.54

? 76

VERY GOOD. YOU WERE OFF BY $ 4.07

THAT WAS AN ERROR OF ONLY 5.08305 %
APPROXIMATELY HOW MUCH SHOULD YOU BUDGET
FOR A TRIP OF 5 DAYS IF~-

HOTEL COST PER DAY = $ 50.22
MEAL COST PER DAY = $ 8.35
INCIDENTALS PER DAY = 5 4.23

? 320

VERY GOOD. YOU WERE OFF BY $ 6

THAT WAS AN ERROR OF ONLY 1.91083 2
APPROXIMATELY HOW MUCH SHOULD YOU BUDGET
FOR A TR"C

Notice that we used two kinds of “error” formulas in this program. The
absolute error E = ABS(A - C) gives the absolute value of the difference
between the correct answer and the approximate answer, while the relative
error E/C shows the ratio between this difference and the correct answer.

Why make this distinction? Well suppose you were a contractor who
made a bid that missed the true cost by $1000. How serious is this? It all
depends. If you take two extreme cases, you'll see why.

Case 1: True cost = $50,000
Your bid = $49,000
Absolute error = $1,000
Relative error = 1000/50000 = .02
percent error = 2%
Case 2: True cost = $2,500
Your bid = $1,500
Absolute error = $1,000
Relative error = 1000/2500 = 4
Percent error = 40%

The absolute error was the same in both cases. It's the relative error that
shows which one is a disaster. (Percent error also shows this since it is merely
relative error multiplied by 100.)

ABS is also handy in making sure that an input response is as requested.
Here's one way this can be done:

84

INPUT CHECK

SOR

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

LIST

10 PRINT "TYPE A POSITIVE INTEGER BETWEEN 50 AND 100.7
20 INPUT A

30 IF INT(A) <> A THEN |20

40 IF ABS(75-A) > 25 THEN 140

S0 PRINT “YOU HAVE OBEYED A COMPUTER.”

60 PRINT “THERE IS NO HOPE.~

70 STOP

120 PRINT "THAT S NOT AN INTEGER.”

130 GO TO 10

140 PRINT “OUT OF REQUESTED RANGE."

145 PRINT "READ THE INSTRUGCTIONS CAREFULLY.~
150 GO TO 190

160 END

TYPE A POSITIVE INTEGER BETWEEN 50 AND 100.
? 25

OUT OF REQUESTED RANGE.

READ THE INSTRUCTIONS CAREFULLY.

TYPE A POSITIVE INTEGER BETWEEN 50 AND 1400.
? 7.5

THAT"S NOT AN INTEGER.

TYPE A POSITIVE INTEGER BETWEEN 50 AND 1400.
? 15

YOU HAVE OBEYED A CUOMPUTER.

THERE IS NO HOPE.

STOP at line 70

If you want to be more explicit in your error messages, statement 40 can
be replaced by two tests:

40 IF A < 50 THEN 140
45 IF A > 100 THEN 142

140 PRINT “TOO SMALLL!"
141 GO TO 145
142 PRINT “TOO LARGE!”

We'll finish this section with a math game program that uses the square root
function of BASIC . SQR(X) processes the number X by finding its square
root and “returning” this value in the place where SQR is used. (The square
root of X is a number which when multiplied by itself gives X. This means
you must use positive numbers for X. Otherwise you'll get an error message.)

SECTION 2.7

Example:

HOUR 7: PROGRAMS TO HELP PASS ARITHMETIC 85

If the number 25 is supplied
10 LET X = 25 / to the SQR function.
20 PRINT X, SQR(X)

RUN

25

The number 5 is “returned”.

Here's a game program to practice estimating square roots:

I

LIST

SQUARE ROOT 5 RANDOMIZE

Quiz 10 LET K = 0
20 PRINT "TO WIN THE GOLD STAR YOU NEED 3 ANSWERS IN A ROW"
25 PRINT "THAT HAVE LESS THAN 5% ERROR.”
30 PRINT " mccccccr e m e e e e c e ;e — e ———————————— -
50 LET R = INT(I00*RND(0) + 1)
60 PRINT “WHAT IS THE SQUARE ROOT OF";R
70 INPUT A
80 LET C = SQR(R)
90 IF ABS(A - C)/C < .05 THEN 130
100 PRINT “NOT TOO CLOSE. SQUARE ROOT OF ";R;"1S”;C
105 PRINT “YOU MISSED BY";100*ABSCA/C=-1)>;3"2"
106 PRINT
110 LET K = 0
120 GO TO 590
130 PRINT “NOT BAD--YOU ONLY MISSED BY";100*ABSCA/C-1);"2"
135 PRINT "SQUARE ROOT OF "3;R;"IS";C
136 PRINT
140 LET K = K + 1
150 IF K < 3 THEN 50
160 PRINT “THAT'S 3 IN A ROW! Wt
170 PRINT * PASTE STAR HERE -- * Ll
175 PRINT ~ kb
180 END

R W N

RUN
TO WIN THE GOLD STAR YOU NEED 3 ANSWERS IN A ROW
THAT HAVE LESS THAN 5% ERROR.
WHAT IS THE SQUARE ROOT OF 78
7 8.11
NOT TOO CLOSE. SQUARE ROOT OF 78 IS 8.83176
YOU MISSED BY 8.17233 %
WHAT IS THE SQUARE ROOT OF 79
7 8.8
NOT BAD-~YQOU ONLY MISSED BY .992265 %
SQUARE ROQT OF 79 IS &.88819

REM

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

WHAT IS THE SQUARE ROOT OF 76

? 8.5

NOT BAD--YOU ONLY MISSED BY 2.49831 %
SQUARE ROOT OF 76 IS 8.7178

WHAT IS THE SQUARE ROOT OF 48

? 6.10

NOT TOO CLOSE. SQUARE ROOT OF 48 1S5S 6.9282
YOU MISSED BY 11.9541 %

WHAT IS THE SQUARE ROOT OF 8

? 6.4

NOT TOO CLOSE. SQUARE ROOT OF 8 IS 2.82843
YOU MISSED BY 126.274 %

WHAT 1S THE SQUARE ROQOT OF 21

? 4.68

NOT BAD--YOQOU ONLY MISSED BY 2.12597 4%
SQUARE ROOT OF 21 IS 4.58258

WHAT IS THE SQUARE ROOT OF 52

? 7.57

NOT BAD--YOU ONLY MISSED BY 4.97701 7
SQUARE ROOT OF 52 IS 7.2111

WHAT IS THE SQUARE ROOT OF 27

?7 5.15

NOT BAD-~YOU ONLY MISSED BY .888204 2%
SQUARE ROOT OF 27 IS 5.19615

THAT®S 3 IN A ROW! LA
PASTE STAR HERE=-~- #* *
33k 3 3b 3

T B e SR —

Notice that the user had to supply an answer within 5% three times in a row
before getting the “gold star”.

For a really fiendish game, make the 5% a variable that gets smaller
each time. Start with V=.05, and then make V=.7*V each time around.

We have been explaining programs by drawing “balloons” on the side which
contain explanatory remarks. Remarks can also be placed within a program
by use of the REM statement which looks like this:

10 REM ANYTHING YOU WANT TO SAY

Remark statements only show up when you list a program, not during a run.
Here's an example of how one of our previous programs might look with
REM statements. It also illustrates a feature in some BASIC's which allows
remarks after the | or ' symbol.

SECTION 2.7 HOUR 7: PROGRAMS TO HELP PASS ARITHMETIC 87

LIST
REMARK 10 REM-~=-PROGRAM FOR CHECKING INPUT-=wme—mecmmame———
DEMO 15 PRINT "TYPE A POSITIVE INTEGER BETWEEN 50 AND 100"
20 INPUT A

25 REM~---FIRST SEE IF MAYBE IT’°S NOT AN INTEGER---
30 IF INT(A) <> A THEN 120

35 REM-~-NOW SEE IF IT"S OUTSIDE RANGE 50 TO 100==--
40 IF ABS(75-A) > 25 THEN 140

50 PRINT "YOU HAVE OBEYED A COMPUTER."

60 PRINT "THERE IS NO HOPE.”

70 STOP

115 REM~---MESSAGE FOR LINE 30 BRANCH~-~

120 PRINT “THAT S NOT AN INTEGER"

130 GOTO 10

135 REM=--~MESSAGE FOR LINE 35 BRANCH---

140 PRINT ~"QUT OF REQUESTED RANGE”

145 PRINT "READ THE INSTRUCTIONS CAREFULLY”

150 GOTO 140

THIS IS THE
SECTION OF
THE PROGRAM
THAT PRINTS
MESSAGES

160 END

88

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

2.8 HOUR 8: KEEPING CHECK ON A BANK BALANCE

In this section we'll explain two new features of BASIC (subroutines and
user-defined functions) by showing how to apply them to the problem of
calculating compound interest. Before discussing these features, let's first
review what’s involved in finding interest that's “compounded” at various
intervals.

The idea of compounding shows up in several kinds of problems. For
example, in calculating the population growth of some species (say rabbits),
you have to allow for the fact that if new rabbits come from the original
population, then new, new rabbits come from both the new rabbits and the
original population, while new, new, new rabbits come from the new, new
rabbits, new rabbits, and original rabbits (assuming no deaths), etc., etc.

The same idea holds for compound interest: it's calculated on the
original amount (called the principal), and on the interest on the principal,
and on the interest on the interest on the principal, etc., etc. How often this
re-calculation gets done is up to the bank. For example, they may do it four
times a year (which is called quarterly compounding), or even 365 times a
year (called daily compounding). There are two methods for calculating
compound interest: (1) use a loop, and (2) use an exponential formula. Let's
look at the loop method first.

Here's a loop for finding 5% interest compounded quarterly on a
principal of $1000, with a total time in the bank of 1 year.

5 LET N = 1000

10 FOR K=1TO 4

20 LET N = N + (.05/4) * N

30 NEXT K

40 PRINT "INTEREST 1S”; N - 1000

The new balance at the end of each quarter (3 months) is calculated in line 20

as follows.
/‘ Interest
N = N + (0544 * N
Interest rate
for 1/4 year
New balance Current balance

Each time around the FOR...NEXT loop is like another 3 months. At the end
of 4 loops, N contains the year-end balance, so N - 1000 gives the compound
interest that accumulated in a year.

To do this same calculation for daily compounding, the loop would have
to go FOR K = 1 TO 365, while the interest added each day would be at the
rate of (.05/365).

SECTION 2.8 HOUR 8: KEEPING CHECK ON A BANK BALANCE 89

GOSUB The small program we just explained can be used as part of a larger (or
“main”) program. The small program can be called a “subprogram”, or a
“subroutine”.

The advantage to building a main program partially from subroutines is
that it helps organize your thinking. The approach to take is to think of
yourself as the VIP (very important programmer). You start by pretending
that you don’t have to worry about details because you can call on assistants
for help. To make the idea even more dramatic, you can picture your
executive office on the top floor, while the assistants work at lower levels
called subroutines. When you need help from an assistant (say at level 1000)
you shout “GOSUB 1000”. When the assistant at this location is finished, he
yells "RETURN". This image isn't as silly as it may seem. To see why, let’s
first look at a “program” written by a VIP which only outlines the work to be
done.

10 Get data on husband’s bank account.

AN
ouT
TO GOLF

50 Get my assistant down on level 1000 to figure out and
print husband’s interest and balance.

65 Get data on wife’s bank account.

90 Ask the same assistant to figure out wife's interest and
balance, and print it.
100 Lock up office and go play golf.

If written in BASIC, such a program would partially look like the following:

10

50 GOSUB 1000
65

»

90 GOSUB 1000

100 STOP N
A 7

1000 REM SUBROUTINE

1050 RETURN

90 CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC
What the statement GOSUB 1000 really means is “go and do the
subroutine that starts at line 1000 and then return to the line right after the
GOSUB statement that was just executed”. To see how this all goes together,
look at the following complete program:
" e ™
LIST
INTEREST 10 PRINT "ENTER INTEREST RATE";
SUBROUTINE 20 INPUT R
30 PRINT "ENTER BALANCE FOR HUSBAND®S ACCOUNT "3
40 INPUT B
50 GOSUB 1000
65 PRINT
70 PRINT "ENTER BALANCE FOR WIFE®S ACCOUNT™;
[80 INPUT B
90 GOSUB 1000 ®—\
100 STOP
1000 REM SUBROUTINE FOR COMPOUNDING INTEREST DAILY OVER 365 DAYS
F] 1005 LET N=B
1010 FOR D=1 TO 365
1020 LET N=N+(R/365)#%N
1030 NEXT D
1040 LET I=N-B
1045 PRINT "YEAR®S INTEREST="3I; "NEW BALANCE=" ;N
\=— 1050 RETURN

1060 END

RUN

ENTER INTEREST RATE? .0525
ENTER BALANCE FOR HUSBAND®S ACCOUNT? 1000
YEAR®S INTEREST= 53.8986 NEW BALANCE= 1053.9

ENTER BALANCE FOR WIFE®S ACCOUNT? 1500
YEAR®S INTEREST= 80.8479 NEW BALANCE= [580.85
STOP at line 100

All the hard work is done in the subroutine from lines 1000 to 1050.
When the main program reaches line 50, it “goes to” line 1000, where it
continues execution. In our example, it does line 1005, followed by 365 times
around the FOR...NEXT loop in 1010 to 1030, followed by 1040, followed by
1045 and 1050. Line 1050 then says RETURN. (Subroutines must always end
with a RETURN statement.) Return means go back to the line right after the
GOSUB. In our example, that's line 65. So 65 is executed right after 1050.
The second time the subroutine is called is at line 90. Again all the hard work
is done in the subroutine (at no extra cost in programming!), but this time the
RETURN is to line 100.

Details, Details

Now that we see the big picture, we can concentrate on explaining how this
particular subroutine works. What it does is to start the new balance out as

DEF FNX

SECTION 2.8 HOUR 8: KEEPING CHECK ON A BANK BALANCE 91

N = B, calculate the interest for one day as (.0525/365)*N, and then get the
revised new balance as N = N + (.0525/365)*N. This process is repeated 365
times in a loop. When the loop is finished, the interest earned for a year will
be the final new balance minus the starting balance, that is, I = N - B. Now
that we have N and I, we can return to line 65, where the program continues.
When the program gets to line 90, this whole process is repeated, but this
time B contains the wife’s balance, so a completely different calculation is
done. In other words, subroutines in BASIC use the current value that
variables have in the main program .

Question: Could this program have been written as easily using GOTO
instead of GOSUB? No, because there would be no way to return to different
line numbers the way RETURN does.

Question: Can subroutines sometimes be inefficient? The answer is yes,
but after everything is working, you can swap your VIP hat for your STP hat
(super terrific programmer), and clean things up a bit. For example, the
subroutine we have shown does the division (R/365) seven hundred and
thirty times! This inefficiency can be removed by adding the statement

25 LET F = R/365

and using F instead of R/365 inside the subroutine.

As just seen, subroutines are small programs, usually involving several lines.
Sometimes a “subjob” can be handled by a single LET statement, and using a
subroutine is hardly worth the effort. In this case, there’s another feature
called DEFining a function that can be used instead of GOSUB. We'll
illustrate its use with the second method for calculating compound interest.

If you dig through some math books, you'll find the following formula
for getting the new balance on an account with compound interest:

N=P*1+R/MNMM*T)

In this formula,
P is the starting principal in dollars,
R is the annual interest rate,
M is the number of times interest is compounded each year, and
T is the number of years left in the bank.

For example, for $3000 left for three years in a bank with 5% interest
compounded monthly,

il
[

000
.05
2

-2 XY
(T
S e

So the new amount at the end of three years is

N = 3000 * (1 + .05/12)%(12 * 3).

92

INTEREST
FUNCTION

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

The 'up arrow’ means raise to that power (exponentiate), so this is a difficult
calculation. It's time for a computer!

Qur programming approach will be to place this formula in a special
statement that allows the formula to be called upon as often as we wish. The
way to “store” a formula like this in a BASIC program is to use the define
function statement as follows:

10 DEFFNN (P, R, M, T) =P * (1 + RIM)$ (M * T)

7 N _

Keyword part

An expression
(or ‘formula’)
that tells what
to do with the
“arguments”

List of “arguments”
used in the function

A one-letter
name you choose

The DEF FNN statement can be placed anywhere in a program, and FNN can
be used anywhere that an expression can be used. Here's a program that uses
our function twice, once in a LET statement, once in a PRINT statement. We
called our function FNN. We could just as well have used names like FNA,
ENB, ENC, ..., FNZ.

THIS I8 THE WAY t IS PRINTED
ON MANY TERMINALS.

LIST

10 DEF FNN(P,R,M,T)=P*(1+R/M) " (M*T)

20 PRINT “YOU HAVE $1000 IN A BANK THAT GIVES”

25 PRINT "5% INTEREST, COMPOUNDED DAILY.”

30 PRINT “HOW MANY YEARS DO YOU WISH TO LEAVE IT";

40 INPUT T

50 LET N=FNNC1000, .05, 365, T)

60 LET I=N-1000

70 PRINT "YOU“LL RECEIVE $";I;" INTEREST AND HAVE A BALANGE OF $";N
80 PRINT “FOR";2%T;"YEARS, BALANCE WOULD =" 3;FNNC1000,.05,365,2%T)
100 END

RUN

YOU HAVE $1000 IN A BANK THAT GIVES

5% INTEREST, COMPOUNDED DAILY.

HOW MANY YEARS DO YOU WISH TO LEAVE IT? 3

YOU“LL RECEIVE $ 161.822 INTEREST AND HAVE A BALANCE OF s 1161.82
FOR 6 YEARS, BALANCE WOULD = 1349.83

As shown in lines 50 and 80, when FNN is used (or “called”) it must be given
arguments. Notice that these arguments can be replaced with constants,
variables, or even expressions.

ON...GOSUB

SECTION 2.8 HOUR 8: KEEPING CHECK ON A BANK BALANCE 93

This statement is similar to the ON...GOTO statement. It directs the
program to go to different subroutines, depending on the value of the
variable (or expression) right after the keyword ON

10 ON K GOSUB 1000, 1500, 2000
20 PRINT

means “if K =1, go to subroutine 1000, return to line 20",
“if K= 2, go to subroutine 1500, return to line 20",
“if K = 3, go to subroutine 2000, return to line 20".

It's up to the programmer to make sure that K only takes on values that
match the number of subroutines. If, for example, K became 4 in our
example, standard BASIC would treat this as an error (some earlier versions
treated this as a “default” and continued execution at the next line—line 20 in
our example). For an example of ON...GOSUB, see SELF-TEST Question 3.

ALL ABOUT BASIC

-HOUR WONDER;

THE EIGHT

HAPTER 2

C

94

v @W%ﬁ%
- . WWW%%@ . %@@w@&é&&& .
e e Vo GG e o o Sae o ;%&«,&m%%@@ . . .
. ,
. - .
. - o .
. . o - e .
ﬁ . . - ..
. . . - o NA%@//\\\» L . o . M&w@p&v% .
x . . . - o . .
% . . Y@%@%@ . . . b L . . . A .
W\%w . WWM@, WWW@?\% %@%@xm?@%m&%%&%%@% . \\\Ww\\. o wvvwwm\%d 5@%@\ . . &%@W@ f/m.(mwmﬂ
. | - . . -
. @www%@%a . . .
- L e) L WW o e . M
o ww < ,\%\5 o - o N@w@ @%@Q«%@% . . . |
. D G . L D
%w%%ﬁs . W%%mym M@NW\&@ /w M%\Mw
; L . , %

e
.

zﬁm o

o

SECTION 2.9 PROJECT IDEAS 95

2.9 PROJECT IDEAS

SUBMARINE

Write a program that allows the user to enter the date of deposit, the
amount deposited, the annual interest rate, the number of times
compounded per year, and the date of withdrawal. The program should
then print the new balance and the interest accumulated. A date like
November 18, 1976 can be entered as:

DATE DEP? 11, 18, 76

You can ignore leap years if you wish. Another simplification is to treat
all months as having 30 days, which means assuming 360 days for one
year (some banking systems do this). Sub-project: How can a bank
advertise that 5.5% interest compounded daily amounts to an annual inter-
est rate of 5.73%?

Write an arithmetic practice program that uses four subroutines: one for
addition problems, one for subtraction, one for multiplication, one for
division. The RND function and ON...GOSUB should then be used to
select the kind of problem (addition, subtraction, multiplication, or
division) to be presented. Also try to use the method of SELF-TEST
Question 3 to produce different kinds of messages for wrong answers, and
other kinds of messages for correct answers. Here's what a RUN might
look like:

ADDITION QUESTION; 5+ 6 = 7 11

RIGHT! YOUR REWARD WILL BE RICHES AND RIPE BANANAS.
SUBTRACTION QUESTION; 33 - 23 =17 16

WRONG—ANSWER IS 10

KEEP THIS UP AND YOU'LL FIND CHICKEN LIVERS IN YOUR SOCKS

DIVISION QUESTION: ...etc. ...

It's legal to have one subroutine call another subroutine in BASIC. The
program below illustrates this feature. Study and run the program, and
then write it without using GOSUB at all. Your program should produce
the same output as shown in our example.

LIST

5 RANDOMIZE

10 PRINT "PLAYER #1 TYPE RANGE (0 TO 50)7;
20 INPUT P

30 LET R = 50 #* RNDC0)>

40 LET D! = ABS(P - R)

50 GOSuUB 1000

60 PRINT "PLAYER #2 TYPE RANGE (0 TO 507
70 INPUT P

80 LET R = 50 #* RND(0)

90 LET D2 = ABS(P-R)

160 GOSuUB 1000

110 IF Dl = D2 THEN 170

120 IF D! < D2 THEN 150

130 PRINT "PLAYER #2 WINS”

140 GOTO 180

150 PRINT "PLAYER #1 WINS”

160 GOTO 1840

170 PRINT ~ TIE SCORE”

180 GOTO 9999

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

1000 REMewermmm—m— TARGET DISPLAY ROUTINE-w-=-
1010 GOSUB 2000

1020 LET X =P

1025 PRINT "SHELL";

1030 GOSUB 3000

1040 GOSUB 20400

1050 LET X =

1055 PRINT "U-BOAT";

1060 GOSUB 3000

1070 GOSUB 2000

1080 PRINT

1090 RETURN

2000 REMemweem—ee= LINE ROUTINEw=w--
2010 FOR K=1 TO 60

2020 PRINT "-";

2030 NEXT K

2040 PRINT

2050 RETURN

3000 REM=wecm—a-e SHELL ROUTINE==---
3010 PRINT TAB(X+8); " <#*>"

3020 RETURN

9999 END

RUN

PLAYER #1 TYPE RANGE (0 TO 5057 35

——— - -y - W o M W W R e M e T e W R W W O G e e o e

4. Find a program written in an extended version of BASIC, and translate it
into a version that runs on your system. The idea is to become familiar
with the possibilities of extended BASIC so you can get a feel for those
features you want to insist on in buying your next software package. It
would also be a good idea to keep a notebook on the special features of
your BASIC.

SOLUTION

We'll show a sample solution to this project as a guide to what's involved.
Our solution will also help you to read programs written in BASIC-PLUS or
EXTENDED BASIC. You'll see that most of the extensions can easily be
translated into minimal standard BASIC, but at the cost of extra statements.

SECTION 2.9 PROJECT IDEAS 97

Our example will first show a Russian Roulette Game program written
in extended BASIC. Then we'll illustrate how each of the extended statements
can be replaced by several simpler statements.

LIST
BASIC-PLUS 10 RANDOMIZE
ROULETTE 20 PRINT "RUSSIAN ROULETTE": PRINT " wecmccmmome- -
30 PRINT "TYPE | TO SPIN CHAMBER, (0 TO QUIT"
35 N=0

40 INPUT "YOUR CHOICE IS™; C
60 IF C=1 THEN PRINT "LOTSALUCK"™ ELSE PRINT "CHICKEN": GOTO 140
70 IF RND(1)>.85 THEN 100 ELSE N=N+l

80 IF N>=10 THEN 120 ELSE PRINT "-~CLICK--"

90 PRINT: GOTO 4¢0

100 PRINT " BANG!!! YOU'RE DEAD": PRINT "“SORRY ABQT THAT"
110 PRINT: PRINT "NEXT VICTIM PLEASE”™ :PRINT:GOTO 30

120 PRINT "YOU DID IT!! 10 MISSES! -~ YOU WINT

125 FOR K=1! TO 10: PRINT "YEA! ";: NEXT K: PRINT

130 STOP

140 PRINT "GET SOMEONE ELSE WHO ISN°T SO SMART": PRINT: GOTO 30
150 END

IR e e e R P

LIST

STD. BASIC ROULETTE 10 RANDOMIZE
__E 20 PRINT "RUSSIAN ROULETTE"

21 PRINT " cm e ™
30 PRINT "TYPE 1| TO SPIN CHAMBER, 0 TO QUIT"
35 LET N=0
— 40 PRINT "YOUR CHOICE IS";
L. 4] INPUT ©
60 IF C=1 THEN 63
61 PRINT "CHICKEN"
62 GOTO 1490
63 PRINT "LOTSALUCK"
70 IF RND(1)> .85 THEN 100
71 LET N=N+1
80 IF N>=10 THEN 120
gl PRINT "--CLICK--"
90 PRINT
91 GOTO 40
_{: 100 PRINT "BANG!! YOU'RE DEAD"
101 PRINT “SORRY ABOUT THAT"
— 110 PRINT
111 PRINT "NEXT VICTIM PLEASE"
112 PRINT
- 113 GOTO 30
120 PRINT "YOU DID IT!t 10 MISSES! -- YOU WIN"
— 125 FOR K=1 TO 10
126 PRINT "YEA! "3
127 NEXT K
—— 128 PRINT
130 sTOP
— 140 PRINT "GET SOMEONE ELSE WHO ISN"T SO SMART"
142 PRINT
— 143 GOTO 30
150 END

SIS SRR e T N—

TP ITT

@@@ﬁ*)

98

CHAPTER 2 THE EIGHT-HOUR WONDER; ALL ABOUT BASIC

The numbers in circles on our diagram refer to the following five explan-
atory notes.

Notes on the Translation from Extended BASIC
to Minimal BASIC

1. Many extended BASIC's allow several statements on the same line
provided they are separated by colons. To translate, you merely write a
separate line for each part. This is what we did with line 20. Other
examples are shown in lines 90, 100, 110, 125, and 140.

2. Line 35 shows that many extended BASIC's allow you to omit the word
LET.

3. Line 40 shows how a message can be placed within an extended INPUT
statement. This translates into a PRINT followed by an INPUT, with the
PRINT terminated by a semi-colon.

4. Line 60 shows how the THEN in an IF... THEN statement can be followed
by another statement rather than a line number. The translation can be a
bit tricky as shown, since ELSE is also used.

5. IF...THEN...ELSE means if true, go to the statement after THEN, if false,
go to the statement after ELSE.

Other features of extended BASIC will be introduced in Chapter 4. Techniques
for translating them into minimal BASIC will also be shown.

WARNING: When you're finished with a translation make sure that all your
“GOTQ” and “IF...THEN" statements branch to the correct line numbers.
You may have to make some changes.

Here’s a sample RUN of the ROULETTE program to show how it should
work if you've done the translation properly. Of course runs will differ with
different RND generators (and RANDOMIZE routines).

SECTION 2.9 PROJECT IDEAS

T e

LIST
RUSSIAN ROULETTE

YOUR CHOICE 157 1
LOTSALUCK

BANG!!! YOU'RE DEAD
SORRY ABOUT THAT

NEXT VICTIM PLEASE

YOUR CHOICE 157 |
LOTSALUCK
~=CLICK=-~

YOUR CHOQICE I157? |
LOTSALUCK
~=CLICK--

YOUR CHOIGCE IS? |
LOTSALUCK
-~-CLICK--

YOUR CHOICE 157 1
LOTSALUCK
~-CLICK~--~

YOUR CHOICE 157 1|
LOTSALUCK
«-CLICK-=~

YOUR CHOICE IS? |
LOTSALUCK
~=CLICK«=

YOUR CHOICE IS? I
LOTSALUCK
~=CLICK--

YOUR CHOICE 157 |
LOTSALUCK
==CLICK-~

YOUR CHOICE IS? 1
LOTSALUCK
««CLICK==

YOUR CHOICE 157 1
LOTSALUCK

YOU DID ITii 10 MISSES!
YEA! YEA! YEA! YEA! YEA!
STOP at line 130

TYPE | TO SPIN CHAMBER, 0 TO QUIT

TYPE | TO SPIN CHAMBER, 0 TO QUIT

-= YOU WIN
YEA! YEA}

YEAT

YEAL

YEAL

S—— T

99

SIMPLE COMPUTER
GRAPHICS; SUBSCRIPTED
VARIABLES

3.0

INTRODUCTION

The ancient wisdom that says “a picture is worth a thousand words” has a
special significance for the computer age. With machines that can generate
output faster than anyone can read it, there’s no doubt that we need new
ways to represent this avalanche of data. The best answer (so far) seems to be
in computer graphics—sophisticated pictures that show the results of all this
computation in a form that is easy to interpret and even easier to remember.

A number of techniques for producing computer graphics will be
described in the book. In this chapter, we'll look at simple methods that
require only use of a standard “alphanumeric” terminal, either the hard copy
or “TV" type. Later chapters will expand on these methods, both in terms of
the programs needed to produce graphical displays, and in terms of the
hardware required for getting pictures with greater detail.

3.1 Different Kinds of Computer Graphics;

Some Terminology

One way to classify computer graphics systems is in terms of the hardware
used. A basic distinction that can be made is between “hard copy” (pictures
on paper that can be saved for later reference), and “soft copy” (electronic

101

102

CHAPTER 3 SIMPLE COMPUTER GRAPHICS; SUBSCRIPTED-VARIABLES

“light” pictures that go away when the machine is shut down). Of course
photographs can be taken of soft-copy graphics, but this is not always
convenient or easy.

Within each category other distinctions can be made as shown in the
chart below. The word “alphanumeric” in the chart means that the terminal
can print only standard alphabetic symbols, numbers, and punctuation
marks. Some terminals are limited to 64 alphanumeric characters, which
means they don't have lower case letters. Other alphanumeric terminals can
handle up to 128 characters. However, in both cases, some of these are
“control” characters which perform some action (e.g. ring a bell) rather than
print anything. By allowing the user to define special characters (e.g. musical
notation), an even larger repertoire of symbols can be made available on
some alphanumeric terminals.

H1. Standard Alphanumeric Printing Terminals

Usually 10 characters per inch, 6 lines per inch.

H2. Plot-Mode Alphanumeric Printing Terminals

HARD COPY Same as above, plus finer steps for making special
shapes out of dots.

H3. X-Y Plotters

Use a pen to make dots, or draw lines connecting
any two points.

H4. Other (e.g. Electrostatic, Electrolytic)
S1. Cathode-Ray-Tube (CRT) Alphanumeric Displays

Put standard characters on CRT screen.

- S2. Raster Scan Color Graphics Displays

Use format similar to home TV (horizontal lines)
for both characters and pictures. The entire screen
is continuously updated (refreshed).

SOFT COPY | S3. Cathode-Ray Vector Graphics (also called “stroke
writing”)

Put characters and/or points and/or continuous lines
on CRT screen. Only update (refresh) the parts of
the picture being displayed.

S4. Storage Tube Terminals

Put characters, points, and continuous lines on a CRT
that does not have to be refreshed.

S5. Dot Matrix Displays

Use a large dot array to get detailed point plots
and/or alphanumeric characters.

S6. Other (e.g. futuristic Holographic displays)

SECTION 3.1 DIFFERENT KINDS OF COMPUTER GRAPHICS 103

These categories are not exclusive. For example, alphanumeric capability
(S1) is frequently found on the other soft copy systems (S2 to S5). And most
X-Y plotters (H3) can draw standard characters, often in several styles.

We played it safe and put the word “other” at the end of each list
because new ideas keep appearing in the field of graphics. For example,
techniques for making hard copies from soft copy terminals already exist.
Further down the road, it seems probable that new kinds of thin
picture-on-the-wall type color displays will eventually appear for use as both
TV and computer display panels. There are even wilder possibilities being
explored in the labs, including 3-D holographic projection systems.

For the amateur on a limited budget, the two best bets are currently (1)
low-cost alphanumeric terminals (either soft-copy on a TV monitor or
hard-copy using a printing mechanism something like an electric typewriter),
and (2) graphic systems that use TV-type cathode ray tube (CRT) displays in
“raster scan” mode. Vector graphics and dot-matrix displays will also bear
investigation when prices come down.

In this chapter we'll look at a number of ways to produce graphics on
alphanumeric terminals (H1 and S1). As you'll see, most of the techniques
we'll introduce (e.g. scaling) are also applicable to the more advanced

graphics systems discussed in Chapter 4.

: %gi
i = 2 S s

T L

T

LSRR SISV B IR L S RSO ENRY

B e

A plasma dot matrix graphics display used A vector graphics terminal that accepts input
with a computer music system. from a light pen.

104

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

3.2 SIMPLE GRAPHS USING PRINT TAB(X)

PR
RS
M

ER MR R

Panmen st

The secret to getting interesting graphical output on an alphanumeric
terminal is to find clever ways of controlling the position in which characters
print on the paper (or screen) of your terminal. The vertical (up-down)
position is usually controlled by the “line-feed” (movement to a new line)
that PRINT statements cause. For example, the loop

10 FOR X=1 TO 15
20 PRINT "*”
30 NEXT X

causes 15 asterisks to print vertically down the left side of the paper. This is
because there will be 15 carriage-returns and 15 line-feeds. But if we change
line 20 to read

20 PRINT TAB(10);"”

something different will happen. The TAB(10) item in the PRINT statement
means move horizontally ten spaces (0 to 9), and then print the asterisk in the
next position (column 10). So now we'll get 15 asterisks printed down the
paper, but in column 10.

0123456789

SECTION 3.2 SIMPLE GRAPHS USING PRINT TAB(X) 105
If we change line 20 further to read

20 PRINT TAB(X);"*"

the position from the left will change each time around the loop, and we'll get
a slanted line of asterisks like this:

0123456

In other words, TAB(X) means move right to the Xth position before printing
the asterisk. (Don’t forget—column positions are numbered 0,1,2,3,...).

Now let's get a bit more daring. If we change line 20 to use a more
complicated TAB expression like

20 PRINT TAB(X*X/10);"*"

we'll get a “curved” line. This is because increasing X from 1 to 25 will
increase X*X/10 from 0.1 to 62.5. Since TAB uses the integer part of its
argument, the asterisks will print in positions determined by the numbers in
the third column of the following table.

X*X/10 TAB(X*X/10)

X

1 1
2 4
3 .9
4 1.6
5

6

7

8

9

[»]

2.5
3.6
4.9
6.4
8.1
10 10.0

O WOk W OO

pd

106

TAB CURVE

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Mathematicians would say we are plotting a “quadratic” curve. Here's what
it looks like:

T et et et e e e e et e e e s st T e et e s st

LIST

10 FCR X=1 TOC 25
20 PRINT TAB(X#X/103;" ="

DIVIPING BY 10 “SCALES”

28 gif . THE GRAPH DOWN SO THE
LAST ¥ IS PRINTED IN

Ready COLUMN 62.

RUN

ON MACHINES WITH 40 COLUMNS
OF OUTPUT (e.a., THE APPLE OR PET)
CHANGE LINE 10 TO:

10 FOR X=17019
SIMILAR CHANGES WILL HAVE
TO BE MADE IN SOME OTHER
PROGRAMS IN THIS CHAPTER,

CONFUSION CORNER: The new ANSI standard for BASIC
suggests numbering columns 1, 2, 3, . . . etc. However

most versions of BASIC follow the 0, 1, 2, 3, . . . scheme we
have shown.

TAB can have any legal BASIC expression as its argument, including
expressions that use BASIC functions. Here's an example where line 20 prints
the symbol “1"” in the position determined by TAB(X+3), while line 30 prints
the symbol “2” in the position determined by TAB(ABS(3*X-36)+3). The
effect is something like graphing the path of two billiard balls. Notice that we
are printing the “1” and “2” on alternate lines. (This was done to simplify the
program.)

TAB LINES

SECTION 3.2 SIMPLE GRAPHS USING PRINT TAB(X) 107

LIST

10
20
30
40
50

Rea

RUN

USING ABS MAKES THE
ARGUMENT OF TAB GO FROM
+39 TO +3 WHEN X GOES

FOR X=0 TO 25

PRINT "A:";TAB(X+3)>;"17

PRINT "B: " ;TAB(ABS(3%X-36)+3);"2"

NEXT X e FROM © ToO +12, AND FROM
+6 TO +42 WHEN X GOES

dy FROM +13 TO +25.

108 CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Another way to use TAB(X) is to read values of X from data statements.
This allows us to print computer graphs that show pictorially what the data
“looks” like. For example, we could plot data from the weekly weigh-ins of

someone on a reducing diet as follows:

e e i N I R

WEIGHT 10 PRINT "GRAPH OF WEEKLY WEIGHTS”

GRAPH 20 PRINT ;

40 PRINT H

55 LET S = 0

60 FOR X=! TO 30
70 READ W

80 IF W<0 THEN 150
85 LET S=S+VW

90 PRINT X3;TABC4);"I";TAB((W-100)/2+46);"#"
100 NEXT X

110 DATA 155, 149,144, 141, 138, 135, 134.5,

130 DATA 150, 143, 135, 130, 126, 123, 121,
140 DATA -1

150 PRINT "AVERAGE WEIGHT ="; S/30

160 END

RUN

GRAPH OF WEEKLY WEIGHTS
100 110 120 130 140 150 160 170

+ + + + + + + +

VRN WND -

s
o
HHHHHHHHHI—!MHHHHHHHNMHHHHNMHHNH
*

" o& %

AVERAGE WEIGHT

14
30 FOR K=100 TO 200 STEP 10:PRINTK; :NEXTK:PRINT

50 FOR K= 0 TO 10: PRINT " + ";:NEXT K:PRINT

120 DATA 134, 135, 136, 136, 137, 139, 140.2,

THIS LINE PRINTS THE GRAPH. THE
FORMULAS USED ARE EXPLAINED IN SECTION 3.4,

LINES 10-50 PRINT
THE 3 “WEADING" LINES.

132, 133, 133.7
142, 144, 147

120, 119, 119
180 190 200

+

+

+

SECTION 3.3 MATHEMATICAL FUNCTIONS IN BASIC 109

One difficulty with our program is that it only gives good graphs for
someone with weights in the range of 100 to 200 pounds. We'll return to this
program in Section 3.4, and show how to make it automatically adapt to a
“personalized” scale of weights. The derivation of the formulas used in line

90 will also be explained there.

3.3 MATHEMATICAL FUNCTIONS IN BASIC

SIN, COS, LOG, EXP, TAN, ATN, SGN

The mysterious words SIN, COS, LOG, EXP, TAN, ATN, SGN are
abbreviations for what are called mathematical functions (their full names are
the “sine”, “cosine”, “logarithmic”, “exponential”, “tangent”, “arctangent”,
and “sign” functions). Of course you've already seen the ABS, SQR, and INT
functions.

A function can be thought of as a “data crunching” machine. You feed it
a piece of input data called the argument of the function, and get back output
data called the value of the function. For example, you can think of the SIN
function as working something like this:

|

VALUES;

110 CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Another way to see what a function does is to make a table. You can do
this by writing a program that uses a FOR loop to “plug” different arguments
into the function, and then PRINT out the values. Here's such a table for the
SIN function:

e B e W P S W
LIST
TABLE 5 PRINT "X", "Y=SIN(X)"

10 FOR X=0 TO 6 STEP 0.5
20 LET Y=SIN(X)
30 PRINT X,Y
40 NEXT X
50 END
Ready
RUN
X Y=SIN(X)

0]

S 479426

1 «841471
1.5 « 997495

2 «909297
2.5 « 598472

3 «14112
3.5 -«.350783

4 ~s 756802
4.5 -+ 97753

5 -+ 958924
5.5 -.70554

6 -e 279415

NS NP NN N B W DN

NOTE: It would be more efficient to replace lines 20 and 30 with one line:

30 PRINT X, SIN(X)

We used two lines just to clarify what was happening.

We won't go very deeply into the mathematical applications of these
functions. However they will be extremely useful to us in writing some of the
high resolution and color graphics programs described at the end of Chapter 4.

As an introduction to these applications, let's see how we can produce
some “pictures” that show graphically what some of the mathematical
functions look like, and which are also attractive as design elements.

Here’s an example showing what the SIN function looks like when
graphed.

111

MATHEMATICAL FUNCTIONS IN BASIC

SECTION 3.3

RUN

o4 6 8

02

- "06 "‘4 ‘02

‘l
2
03
o4
«5
.6
«7
.8
'9

el

a
.

1.3

L 4

.
-

.
—

0

.
—

~ 00 - QDTN O0O0 ~ NI NV~ “- NI OO NN OO -l ™M

s s 0 * s s e s e & s e « s 2 & o+ & o & o *® 5 2 e s 4 s s s ¢ e e & e+ o s e « o &

-, NN NANNAANANOIOITOOOOOOIIIIIIIIIIONDOLDOODODLLNILL Y OO

112 CHAPTER 3 SIMPLE COMPUTER GRAPHICS

TR e I e NP R e
LIST

SINE GRAPH 10 FOR F=-1 TO 1.1 STEP .2

20 PRINT TAB(9+30#*(F+1));INT(F*100)/100;
30 NEXT F

40 PRINT

50 FOR A = 0 TO 6.3 STEP .|

60 PRINT A;TABCI0+30#(SINCAY+1)); " #"

70 NEXT A

80 END

The first loop in lines 10-30 puts numbers across the top of the page
to show what values of the SIN function are being graphed. (The numbers
were selected as shown because we know from trigonometry* that the SIN
function has values that range from -1 to +1).

The second loop in lines 50-70 prints A (the argument), and then prints
an asterisk in a position determined by the value of SIN(A). We used
SIN(A)+1 in our TAB so that the values -1 to +1 would be changed to the
range O to 2 (you can’t TAB negative values). We multiplied by 30 to spread
the picture out from columns 0 to 60, and then added 10 to shift all values 10
columns to the right (to leave room for printing A). So the final graph goes
from 10 to 70. On a terminal with a smaller number of columns the
multiplier 30 should be reduced to about 15.

MATH NOTE: SIN, COS, and TAN are called trigonomeric functions. In
many mathematics books, the arguments for these functions are given in
degrees. In BASIC, the arguments of these functions must be given in radians. A
radian is roughly equivalent to 57 degrees. The exact relation is 2n radians =
360 degrees. Since 2m = 6.28, line 50 of our program makes the argument A g0
from 0 to about 360 degrees.

Of course we can print other things besides a single asterisk “*". Here's
how you can have fun “SIN"ing your name with the same function.

SINE NAME

SECTION 3.3 MATHEMATICAL FUNCTIONS IN BASIC

LIST

10 FOR A=0 TO 6.3 STEP .2
20 LET Y= SINCA)

30 PRINT TAB(20*Y+20); "HARVEY KILOBIT"
40 NEXT A

50 END

Ready

RUN

HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT

HARVEY KILOBIT

HARVEY KILOBIT

HARVEY KILOBIT

HARVEY KILOBIT

HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT

W—— NV SRR i T O I i e U

113

The COS function can be used to give similar effects. Both SIN and COS
“wiggle” between -1 and +1, but with different starting points. Here's what

you'll get when you “COS”ign your name:

114

COSINE NAME

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

pr—— o i e et e T e e W oy

LIST

10 FOR A= 0 TO 6.3 STEP .2

20 LET Y=CO0s¢A)

30 PRINT TAB(20*Y+20); "HARVEY KILOBIT"
40 NEXT A

50 END

RUN

HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOEIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILCBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT

e R i el U A e .

Combining functions, and putting multipliers in front of the arguments
gives tricky “intermodulation” effects. Here's a pleasing pattern that comes
from plotting the combined function Y=COS(2*A) + SIN(A). Electronics
buffs will see that we are combining two signals that are “90 degrees out of
phase”, and that the first one has “twice the frequency” of the second.

MODULATED
NAME

SECTION 3.3 MATHEMATICAL FUNCTIONS IN BASIC

115

prm—— A et AT, et T et el T Sttt TNt i

LIST

10 FOR A=0 TO 9.5 STEP .2

20 LET Y=COS(2*A)+S5INCA)

30 PRINT TABCI1S*Y+30); HARVEY KILOBIT®
40 NEXT A

50 END

RUN

HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT
HARVEY KILOBIT

P T e

116

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Another interesting use of the SIN and COS functions is in the graphing of
Lissajous figures (named after the 19th century French physicist, Jules
Lissajous). Programs that produce such graphs will be shown in Sections 4.4
and 4.5.

Further information about the graphing of mathematical functions can be
found in Chapter 7 of BASIC and the Personal Computer (Addison Wesley,
1978). You can also experiment with other functions in BASIC by using them in
a program similar to TABLE (page 110). However, you will find that for some
arguments, you may get error messages. For example, SQR and LOG cannot
have negative arguments. Another trouble-maker is TAN. For example, TAN
(3.14159265/2) has the value “infinity”, so computers can’t handle it, and will
produce either nonsense or some kind of error message. The best way to
identify such cases is to read about these functions in a mathematics book, and
then experiment with printing tables of the type shown at the beginning of
Section 3.3.

3.4 WHAT TO DO IF YOUR BASIC DOESN'T HAVE
TAB; THE SCALING OF GRAPHS

Some of the simpler versions of BASIC may not allow TAB, or they may
only allow TAB with a constant (like TAB(5)). You can simulate a statement

like

30 PRINT TAB(Y);“*"

by replacing it with a loop that prints Y blanks, and then follows this with a
statement that prints an asterisk on the same line. Here’s the code for
simulating 30 PRINT TAB(Y); “*”

30 FOR T=0 TO Y-1
40 PRINT ~ 7,

50 NEXT T

60 PRINT "~

We let the variable T go from zero to Y-1 because columns on a printer
are numbered with zero as the starting position. A program to print a graph
of the SIN function using this trick would look like the following:

SIMULATED TAB

SECTION 3.4 WHAT TO DO IF YOUR BASIC DOESN'T HAVE TAB 117

—WWW—\‘N —
LIST

10 FOR A = 0 TO 6.8 STEP .2
20 LET Y=INT(30#SINCAY+30)
30 FOR T=0 TO Y-1
40 PRINT ™ 73

50 NEXT T

60 PRINT ~#*°

70 NEXT A

80 END

THIS LOOP SIMULATES
USING TAB(Y);

Ready

RUN

Scaling Graphs

You've seen that although the SIN function has values that go from -1 to +1,
we were able to spread the graph out over 60 columns. We did this by first
adding +1 (which is called translating the range of values). This was done to

118

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

avoid negative numbers, giving a range of values 0 to 2 instead. Then we
multiplied by 30 (which is called scaling the range of values) so that the range
became 0 to 60. In this way we were able to spread 2 units over 60 terminal
columns. We can either say that our “scale factor” was 30 terminal spaces per
mathematical unit, or conversely, that it was 1/30 of a mathematical unit per
terminal space.

Let’s now return to the dieter's weight graphing program from Section
3.1 and see how we can add an automatic scaling feature. The diet program
was supposed to graph weights from 100 to 200 pounds. To make the left
edge of the paper correspond to 100 pounds (instead of zero), the first thing
we did was “shift” the whole graph left 100 units. This was done by
subtracting 100 from W (a translation).

Our next decision was to scale the weights from 100 to 200 into 50
terminal spaces. To do this we multiplied by a scale factor of

50/(200-100) = 1/2 terminal space per pound

Example: For a weight of 150 pounds, the program should first translate this
weight by taking 150-100=50. It should then scale it by taking 50 * (1/2) = 25
terminal spaces. Here's a picture of what happens:

/

Computer

Translation Output

of 100 Ibs. \

25 spaces for
50 pounds

All of this can be done by saying
PRINT TAB ((W-100)*(1/2));"*"

But multiplying by 1/2 is the same as dividing by 2, so this can be written
more simply as

PRINT TAB ((W-100)/2);"*"

SECTION 3.4 WHAT TO DO IF YOUR BASIC DOESN'T HAVE TAB 119

To improve the readability of the graph, we then allowed six extra
spaces for printing X (the week number) followed by the symbol “I” in
column 4. Putting all these things together gave line 90 of the original
program:

90 PRINT X; TAB(4); "1"; TAB((W-100)/2+6); """

Thus for X=21 and W=150 we'd have

Col. 0123456789.....ccccvenni.. 31 (= 25 + 6)

Automatic Scaling

We can generalize this idea by using a starting weight called A (instead of
100), and a final weight called B (instead of 200). This makes the scale factor
50/(B-A) spaces per pound. The translation is now A pounds (not 100), and
the starting weight at the left edge of the graph is W-A (not W-100). This
gives us as a generalized print statement:

460 PRINT X; TAB(4);"1”; TAB((W-A)*(50/(B-A))+6); """

It will also be necessary to generalize the headings at the top of the graph,
and this is done in a similar manner. Here's a program that does this
“customized” scaling in a subroutine (lines 315 to 480). The first time the
subroutine is used, the weights go from 100 to 200 (line 180). But then the
user is asked to supply a more personalized set of minimum and maximum
weights. These are input as A and B in lines 280 to 301. This program also
contains the user’s “goal” weight as the first number in DATA statement 900.
This way the program can tell the dieter how many “pounds-to-goal” there
are. The -1 the the end of the DATA is used to stop the READ loop (see line
80). Here's the improved program and a run.

120

SCALED
WEIGHT
GRAPH

e S I I S N

LIS

1@

28

30

35

40

45

50

60

70

80

90

100
110
120
130
140
150
160
170
175
180
190
250
260
270
280
290
300
301
303
305
307
309
315
316
317
330
340
350
360
370
375
3890
390
400
410
4290
425
426
428
429
430

450
460
470
480
900
%10
999

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

T

PRINT"WEIGHT WATCHER®S RECORD”

PRINT :PRINT "WEEK", "WEIGHT","WT. LOSS”
S=g¢: D=8

REM- == -~ CALC. & PRINT TABLEwwwrm—wmeaa-
READ G

I=0

I=1+1]

READ W

IF I=1 THEN 110

IF W<0 THEN 1490

D=W1-W
S=S+D

PRINT 1,W,D

Wl =

GOTO 50

PRINT:PRINT"AVG. WEEKLY LOSS "3S/¢I-1);"LBS.”

PRINT"LBS. TO GOAL ";Wl1-G

PRINT"TOTAL POUNDS LOST SO FAR “;S

PRINT:PRINT"WEIGHT WATCHER®S GRAPH" : PRINT

REM- ---~STANDARD SCALE(100-200)=====

A=100:B=200

GOSUB 315

REM~-==-=CUSTOMIZED SCALE==m=c=w===

PRINT:PRINT"WANT A CUSTOMIZED GRAPH" ;:INPUT A%

IF A$="ND" THEN 999

PRINT"WHAT IS THE SMALLEST NUMBER YOU WANT(INSTEAD OF 100)";
INPUT A

PRINT"WHAT IS THE LARGEST NUMBER YOU WANT(INSTEAD OF 200)";
INPUT B

GOSUB 315

PRINT"WANT ANOTHER GRAPH" ;:INPUT AS

égTSSS;‘;ES" THEN 280 SUBROUTINE 315-480

-7 e 18 USED FOR BOTH THE

ii? GRAPH SUBROUTINE STANDARD AND CUSTOM-
REM=mm=m HEADING (LINE !)mmem= /IZED SCALES. THE
FOR I=A TO B STEP 10 VALUES OF A AND B
PRINT TAB(X#50#(10/(B=-A))+5);13 MAKE THE DIFFERENCE.
X=X+1

NEXT I

PRINT

REM---~ ~HEADING (LINE 2)====-

PRINT" 173

FOR I=0 TO (X-1)

PRINT TABCI#50%(10/(B-A))+7);"+";

NEXT 1

PRINT

RESTORE

READ G

REM-—-—== PRINT GRAPH-= ===

I=0

I=1+]

READ W

IF W<0 THEN 48¢

PRINT I;TAB(4); 173 TAB((W=-A)#(50/(B=A))+6); #*"

GOTO 430)

RETURN

DATA 122,153,149.5,147.5,147.5,145,144.5,141,141.5,139.25
DATA 139.5,137.5,138.5,-1

END

| SR ey NEEES NEEENSL SIS 0 WY S T T SRR, ' L N

WHAT TO DO IF YOUR BASIC DOESN'T HAVE TAB

121

SECTION 3.4

R P e e W

RUN

WEIGHT WATCHER™S RECORD

WEEK WE IGHT WT. LOSS

1 153 0

2 149.5 3.5

3 147.5 2

4 147 .5 0

5 145 2.5

6 144.5 .5

7 14l .5

8 141.5 -.5

9 139.25 2.25

10 139.5 -.25

11 137.5 2

12 138.5 -1

AVG. WEEKLY LOSS 1.20833 LBS.

1LBS. TO GOAL 16.5
TOTAL POUNDS LOST SO FAR 14.5
WEIGHT WATCHER"™S GRAPH
100 110 120 130 140 150 160
I+ + + + + + +
1 I #*
2 1 *®
3 1 *
4 1 #*
5 I *
6 I *
7 I #*
g 1 #*
9 I #*
10 1 3
11 1 #
12 1 3

WANT A CUSTOMIZED GRAPH? YES

WHAT IS THE SMALLEST NUMBER YOU WANT(INSTEAD OF 100>7 130
WHAT IS THE LARGEST NUMBER YQU WANT(INSTEAD OF 2003>? 150

130 140
+ +

ot pe b G R3O P WO

N+
L B B I O L T T S o R T

WANT ANOTHER GRAPH? NO

I L

170
+

180 190 200

+ + +

THE SECOND GRAPH
SHOWS THE SAME DATA
AS THE FIRST, BUT IT
1S SPREAD oUT OVER
A BETTER RANGE.

150

122

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

3.5 SUBSCRIPTED VARIABLES

ol

\\\m“\ \1,\\}:;. ‘ulﬁg \Ux-C \“Ml’[\“

(

AT

X ARRAY

So far we have been limited to variable names made up of a single letter
(A,B,C...,Z), or a single letter followed by a single digit (A1, A2,
A3,...28,729). One of the problems you eventually run into with such
variables is that you can't always foresee how many are needed, and there’s
no way for the computer to add new variable names when this happens. To
see what the problem is, look at the next program which asks a person to
input an unspecified number of weights.

Since we don't know how many weights the person may type in, we ask
the user to type zero to signal when input is finished. Since we want to print
“deviations from the average” of each weight, we'll have to save all the
weights in separate variables until the end (because only then can we
calculate the average). So we “guess” that at most four weights will be input,
and use separate input statements to save these weights in W1, W2, W3, and
Wa4. As you can see this is a very clumsy and very limited approach. We also

SECTION 3.5 SUBSCRIPTED VARIABLES 123

get a ridiculous “deviation from the average” when the user types in the zero.
The villain here is line 220 which blindly prints all the differences.

e e ™ D
LIST
HORRIBLE 10 LET S=0
EXAMPLE 20 PRINT"TYPE A WEIGHT AFTER EACH ? --TYPZ 0 WHEN FINISHED"

30 INPUT Wl

40 IF W1=0 THEN 190

50 N=N+1

60 S=S+Wl

70 INPUT W2

80 IF w2=0 THEN 190

90 N=N+1

100 S=S+W2

110 INPUT W3

120 IF W3=0 THEN 190

130 N=N+1

140 S=S+W3

150 INPUT W4

160 IF W4=0 THEN 190

170 N=N+l

180 S=S+W4

190 LET A=S/N

200 PRINT "“AVERAGE WEIGHT ="3;A
210 PRINT “DEVIATIONS FROM THE AVERAGE WERE"™
220 PRINT Wl-A;W2-A;W3-A3W4-A
230 END

RUN

TYPE A WEIGHT AFTER EACH ? --TYPE 0 WHEN FINISHED
? 150

? 175

? 163

70

AVERAGE WEIGHT = 162.667

DEVIATIONS FROM THE AVERAGE WERE
-12.6667 12.3333 .333328 -162.667
OK

N N N e B e P SRS WIS R

HERE'S JUST ONE OF THE
REASONS THIS IS A POOR
PROGRAM .

There's got to be a better way! And there is. The new feature that clears
up this problem is the ability of BASIC to have what are called “subscripted
variables”. These look like the following:

A1), AQ), AB), Al4),...Z(86), Z(87), Z(88),...

You use a variable name followed by any positive integer placed in
parentheses. A(3) is pronounced “A sub 3”, and it really means the third
location in an array of locations. You can have hundreds (or even thousands):
of these locations, depending on how much memory your computer has.

What's an array? It's a concept that allows you to organize your
computer’s memory in blocks of variables that look something like this:

124
A(0) data
A1) data
A2) data
A(3) data
A4) data
Z(0) data
Z(1) data
Z(2) data
Z(87) data
Z2(88) data
ARRAY DEMO

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

How many variables are in each block is up to you. You let the program
know by using the DIMension statement as follows:

10 DIM A{4), Z(88)

This means reserve a block of five subscripted variables with names from
A(0) to A(4), and a block of 89 with names Z(0) to Z(88).

NOTE: (1) If you don't use DIM, BASIC will assume you meant DIM A(10),
Z(10). (2) Some BASIC's don't allow the A(0) or Z(0) names, so they give you
one less location in each block than our diagram shows.

And Now for the Really Good News!

The power of arrays (or blocks) of subscripted variables is that the computer
can reference them through use of program variables. This is because you can
also use variables as subscripts. Watch carefully:

LIST

5 DIM wW(Cl100)

10 INPUT "HOW MANY WEIGHTS™;N

12 PRINT "TYPE A WEIGHT AFTER EACH ?~
iI5 FORK=1 TO N

20 INPUT W(K)

25 NEXT K

30 PRINT "YOUR WEIGHTS IN REVERSE ORDER ARE~
40 FOR K = N TO | STEP -1

50 PRINT W(K)

60 NEXT K

70 END

Ready
RUN

HOW MANY WEIGHTS? 4

TYPE A WEIGHT AFTER EACH ?
? 234

? 211

7 213

? 189

YOUR WEIGHTS IN REVERSE ORDER ARE
189

213

211

234

The secret to understanding what happened in this program is to picture

memory as follows:

SECTION 3.5 SUBSCRIPTED VARIABLES 125

N 4 In the loop 15 to 25, the user put numbers in the four locations W(1), W(2),
W(3), and W(4), so the loop 50 to 70 has no trouble printing them out in

wa@ 234 reverse (or any other) order. This is because it can reference W(I) for any
WEZ; 21 sequence of I's. The computer can now find variables under program control.
NE 213
W(4) 189
W(5)

o WARNING: W(3) is very different from W3. Don't get these confused. Also

. note that you can use W(K) in a program, but WK is illegal in minimal BASIC.
W(100)

A program that uses subscripted variables is much more flexible since it
can “decide” which variables to manipulate by using a variable for the
subscript—Ilike the K and J in W(K) or W(J). Let’s see how this idea can make
our weight deviation program much more useful.

e Wy

LIST

WEIGHT AVERAGE 10 DIM W(100>

20 LET S$=0

30 PRINT “HOW MANY WEIGHTS TO BE AVERAGED™;

40 INPUT N

50 PRINT"TYPE A WEIGHT AFTER EACH 7?7
60 FOR K=1 TO N sL THIS LOOP FPRODPUCES THE

;g INPUT W‘g’ J‘ QUESTION MARKS THAT PROMPT
LET S=S+W(K)

W ARRAY.
90 NEXT K FOR INPUT TO THE W ARRAY

95 LET A=S/N
100 PRINT "AVERAGE WEIGHT ="3A
110 PRINT "DEVIATIONS FROM THE AVERAGE WERE"
120 FOR K=1 TO N
130 PRINT W(K)-A
140 NEXT K

150 PRINT

160 END

Ready
RUN

HOW MANY WEIGHTS TO BE AVERAGED? 6
TYPE A WEIGHT AFTER EACH 7
? 175
163
181
145
162
? 150
AVERAGE WEIGHT = 162.667
DEVIATIONS FROM THE AVERAGE VERE

12.3333

«333333

18.3333
~17.6667
- 666667
-12.6667

) e ea))

126

W(1)

175

W(2)

163

@———+ W)

181

W(4)

145

W(5)

162

K=6 r—P W(6)

150

W(100)

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Notice how easy it is to get the deviations in line 130. This is because the
FOR loop of line 120 controls the subscript K. You should think of K as
though it were a pointer, moving down the list of weights, automatically
selecting each in turn until it reaches the Nth one. (N=6 in our example, but
it could be as high as 100).

You can have several arrays in a program. (Of course each array uses as
many memory locations as you dimension, so you may run out of space
unless you have a lot of memory in your machine). Here's an improvement
on the previous program that uses two arrays with 100 locations each. This
program also contains a useful idea in the subroutine (lines 1000 to 1070). It's
an algorithm for finding the largest (max) and smallest (min) item stored in
an array. It works by first assuming that W(1) is both the largest (L=W(1))
and smallest (5=W(1)) item. Then it loops down through the array, looking
at all the remaining items. If it finds a W(K) that’s smaller (line 1020), then
this W(K) goes into S. Also, we “remember " which subscript corresponded
to the latest “smallest” with the variable Y (see line 1050). The same thing is
done to find the largest W(K) in lines 1022 and 1030. The subscript of the
largest weight is “remembered” with X. Then X and Y can be used to point at
the months in which largest and smallest weights occurred (see lines 110 and
120).

MAX-MIN
WEIGHTS

LIST

S DIM W(C100)>,MC100)

10 PRINT "HOW MANY MONTHLY WEIGHTS TO BE AVERAGED";

20 INPUT N

30 PRINT “AFTER EACH ? TYPE MONTH #, WEIGHT"

40 LET S=0

50 FOR I=1 TO N

60 INPUT M(CI),W(ID

70 LET S=S+W(I)

80 NEXT I

90 PRINT "AVERAGE WEIGHT WAS";S/N

100 GOsSuB 1000

110 PRINT "YOUR LARGEST WEIGHT WAS ";L;"LBS. IN MONTH # “3M(X)
120 PRINT "YOUR SMALLEST WEIGHT WAS ";5;"LBS. IN MONTH # ";M(Y)

S

130 sTOP

999 REM-~--ROUTINE TO FIND MAX WT., MIN WT., AND CORRESPONDING MONTHS ===
LET L=W(1):LET S=W(1):LET X=]:LET Y=l

K=2 TO N

IF W(K)><S THEN 1050
IF W(K)>L THEN 1030
GOTO 1060

LET L=W(K):LET X=K
GOTO 1060

LET S=W(K):LET Y=K
NEXT K

RETURN

1000
1010
1020
1022
1024
1030
1040
1050
1060
1070
9000

FOR

END

X AND Y WILL “POINT" AT THE
MAXIMUM AND MINIMUM WEIGHTS
WHEN THIS LOOP FINISHES .

SECTION 3.5 SUBSCRIPTED VARIABLES 127

RUN

HOW MANY MONTHLY WEIGHTS TO BE AVERAGED? S
AFTER EACH ? TYPE MONTH #, WEIGHT

? 4,170

7 5,175

? 6,189

? 7,182

?7 8,173

AVERAGE WEIGHT WAS 177.8

YOUR LARGEST WEIGHT WAS 189 LBS. IN MONTH # 6
YOUR SMALLEST WEIGHT WAS 170 LBS. IN MONTH # 4
STOP at line 130

N

The preceding program handles the weights for one person nicely. But
suppose you want to keep records for a group of people, and use your
program to select and average the data for any one of them. This suggests
that it would be nice to have variables with two subscripts, one to “point”
out the month, the other to “point” out the person. In other words, we’'d like
to use a variable like W(5,4) to mean the weight in the 5th month of person
#4. This can be done in most versions of BASIC, using two-dimensional
arrays. Let's see how they work.

Two-Dimensional Arrays; Double Subscripts

In addition to one-dimensional arrays, it's also possible to set aside
two-dimensional or rectangular arrays (blocks) of memory in most versions
of BASIC. For example,

10 DIM A(5,4)
means reserve a block of 20 computer memory locations called
A(l,1) A(1,2),..., A(5,3), A(5,4).

You should picture these memory locations as being organized in a block
with five rows and four columns as following:

A(1,1) (data) A(1,2) (data) A(1,3) (data). A(1,4) (data)
A(2,1) (data) A(2,2) (data) A(2,3) (data) A(2,4) (data)

(23)—p AGD (@ata) || AB2) (data) || AG,3) (data) | A(34) (data)

A(4,1) (data) A(4,2) (data) A(4,3) (data) A(4,4) (data)
A(5,1) (data) A(S,Z)*‘(data) A(5,3) (data) A(5,4) (data)

128

ARRAY DEMO 2

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Again the real power of these “doubly-subscripted” variables is that the
subscripts themselves can be variables. We can now write A(I,]) to “point” at
the data in row [and column J. If =3 and J=2, the program will use the data
in A(3,2). So this would be a natural way to store the weight of member #2
for month #3 in a diet program. But of course there are many other uses. A
more ambitious application will be explained in Chapter 4 where we'll show
how a two-dimensional array is a natural way of storing the data for a business
record sorting program.

For a quick example now, here’s a program which prints a table of how
many sales of each of three items were made in four months. In other words,
our picture of the data structure is the following:

ITEM 1 ITEM 2 ITEM 3
Month 1 345 687 149
Month 2 344 689 235
Month 3 378 499 245
Month 4 377 568 388

In this example think of ROW as meaning “"MONTH"”, and COLUMN as
meaning “ITEM”. The main thing to observe is that two nested FOR loops
are needed for both INPUT (lines 60 to 110) and OUTPUT (lines 150 to 200).
The outer loop on I controls the row subscript, while the inner loop on]
controls the column subscript. The comma at the end of line 170 forces all the
items controlled by the J loop to print on one line. The PRINT statement in
line 190 produces a carriage return and line feed to get ready for the next time
the J loop is executed.

R N M o P e g e W
LIST

10 DIM DC10,4)
20 PRINT "HOW MANY ROWS OF DATA";

30 INPUT M

40 PRINT "HOW MANY COLUMNS PER ROW™;
50 INPUT N

60 FOR I=1 TO M

70 PRINT "TYPE";N; "ITEMS FOR ROW™;1I

80 FOR J=! TO N
90 INPUT D(1,d) ARRAY INPUT

100 NEXT J

110 NEXT I

120 PRINT "DATA SUMMARY”

130 FOR I=1 TO N:PRINT "ITEM"3I1,:NEXT I:PRINT
140 PRINT mecoccmcm e e e n e — o
150 FOR I=! TO M

160 FOR J=1 TO N

170 PRINT D(I1,dJ),
180 NEXT J ARRAY oUTPUT
190 PRINT

200 NEXT 1
210 END

SECTION 3.5 SUBSCRIPTED VARIABLES 129

RUN

HOW MANY ROWS OF DATA? 4

HOW MANY COLUMNS PER ROW? 3

TYPE 3 ITEMS FOR ROV 1

? 345

7 687

T 149

TYPE 3 ITEMS FOR ROV 2

? 344

7 689

? 235

TYPE 3 ITEMS FOR ROW 3

378

499

245

TYPE 3 ITEMS FOR ROW 4

377

568

388

DATA SUMMARY

ITEM | ITEM 2 ITEM 3
345 687 149
344 689 235
378 499 245
377 568 388

PRRTR I

VRS

This program doesn’t do very much at present, but we'll return to a discus-
sion of two-dimensional arrays in Section 4.1, and show another example of
their use in Section 4.3.

130

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

3.6 BAR GRAPHS; PINBALL SIMULATION

O
|
.\\
4

® n"\\l @

® L 28N L]

° [} ® ,—l @
‘1 213 4[‘5 6 7]
O

Graphical output is often useful in displaying the results of what are called
“computer simulations”. These are programs that make the computer imitate
some other process. Simulations are a good way to study complex processes be-
fore trying the real thing.

OQur simulation program will imitate a pinball machine with rigid
(non-moving) pins on a slanted table, and pockets at the bottom. The
program “drops” balls in the opening indicated by the arrow. As each
simulated ball rolls down, it strikes pins and bounces randomly to the left or
right, finally landing in one of the pockets.

We would like to know how many balls end up in each pocket after a
large number of trials. One way to find out would be to build the pinball
machine and spend days rolling balls and counting how many land in each
pocket. Instead, let's write a program to simulate such a machine. We'll use
seven pockets in our example.

To begin with, let's set up a “pointer” P which describes where the ball is
at any given time. Another way to explain P is to say it points at the pcoket
position directly under the ball. At the beginning of the simulation, the ball
would fall into pocket 4 if no pins were in the way, so we'll start by setting P
= 4. Since there are 6 levels of pins, we'll need a loop “FOR L =1 TO 6" to
simulate the entire drop. At each level, the ball will hit a pin and bounce
either to the left or to the right.

This is random process, so let's use random numbers to decide the ball's
path. If the ball does hit a pin we'll assume it's knocked one-half pocket to
either side, that is, we'll assume the pins are always in the middle of the ball’s
path. We'll set P=P + .5 or P = P - .5, depending on which direction the ball

SECTION 3.6 BAR GRAPHS; PIN BALL SIMULATION 131

goes. When the ball finally lands in a pocket we'll keep score by adding one
to that pocket’s contents. Then we'll drop the next ball. After all the balls

have been dropped, we'll print a table of pockets and the corresponding
number of balls.

PINBALL COUNT
—————W——"—v

100 REM---PUT RANDOMIZE STATEMENT HERE IF NEEDED
110 FOR N=1 TO 7
120 LET C(N>=0
130 NEXT N
140 PRINT “POCKET","COUNT”
160 FOR B=1 TO 100
170 LET P=4 NOTICE HOW THE POINTER P IS ALSO
B RO L kemNDL 1 USED AS A SUBSCRIPT: THIS MAKES
200 IE ¥e.5 THEN 230 THE VARIABLE C(P) COUNT THE NUMBER
210 LET P=P-.5 OF BALLS FALLING INTO THE POCKET
220 GOTO 240 TO WHICH P FINALLY POINTS.
230 LET P=P+.5
240 NEXT L
250 LET C(P)=C(P)+l
260 NEXT B
270 FOR N=! TO 7 “IN BASIC-PLUS 3 LINES LIKE THIS CAN BE
280 PRINT N, C(ND “WRITTEN AS | BY USING A “FOR MODIFIER™:
290 NEXT N “270 PRINT N, C(N> FOR N=1 TO 7
300 END
RUN
POCKET COUNT

1 0

2 9

3 19

4 35

5 25

6 8

7 4
oK

RUN
POCKET COUNT

i 1

2 7

3 21

4 317

5 24

6 7

7 3
OK
RUN
POCKET COUNT

1 4

2 4

3 23

4 33

5 25

6 8

7 3
oK

e NS

132

BAR GRAPH

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

You can see that most of the balls g‘g x
land in pockets 3, 4, and 5. If we plot § BALLS 25 X X
the distribution of balls, we get a graph 20
something like this: 15
X X
10
5
1234567
POCKETS

This is a rather crude graph. Theoretically, the graph should
approximate what is called a “normal” or bell-shaped curve that looks like
this:

To get a better approximation to this curve, we'll have to run more trials.
Suppose we change our program so there are 31 pockets with pins at 30
levels, and drop 5,000 balls into this pinball machine. Let's also make our
program graph the results.

For this problem, a good way to display results is to use a histogram, or
bar graph. Here's a short program segment that illustrates the basic technique
needed for making a bar-graph on an alphanumeric terminal. Suppose we
wanted to graph the contents of 3 pockets that had 50, 110, and 87 balls
each. Here's what we could do:

i S " ——
LIST
10 LET C(1) = S0
20 LET €(2) = 110
30 LET C(3) = 87

40 FOR I =1 TO 3

45 PRINT I3 TAB(S);C(I);TAB(IO);"I';
S0 FOR K= TO CCI>/10

60 PRINT "<#>";

70 NEXT K
80 PRINT
980 NEXT I
i00 END
Ready
RUN
i 50 jedrchp > <> <>
2 110 I<#><¥><cUnc#n>cH>CH> <> P CRDCUDCHD
3 87 42> cH>CE>CRBICHDCHD>

o~ T e N e i .

SECTION 3.6 BAR GRAPHS; PIN BALL SIMULATION 133

The loop 50-60-70 prints one “bar” in our bar graph, using the symbol
<*> for every 10 balls that reach pocket C(I). The outer loop 40-90 controls
the number of bars, one for each pocket.

RUN

PKT COUNT GRAPH

1 g

2 |1

3 0

4 g

5 0 3

6 g :

7 4 3

g 10 30
9 23 :00

10 61 :000000

11 148 :00000000000000

12 248 :000000000000000000000000

13 407 :000000000000000000000000000C 000000000000

14 604 :00

15 644 =00
16 719 :000
17 640 :00
18 578 + 00000000000000000000000C00000p000000000000000000000000000

19 418 3000000000600000000000000000000000000000000

20 240 :000000000000000000000000

21 151 :000000000000000

22 62 3000000

23 28 300
24 10 :0
25 S s
26 0 s
27 0
28 g
29 g s
30 [
1

134

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

3.7 PRINT USING; FRACTURED FRACTIONS

Some extended versions of BASIC permit what is called “formated” output.
This means that you can specify the format (or arrangement) of items in a
line of output, and avoid some of the limitations of the “standard” spacing
for numbers and characters. In particular, you can specify the number of
decimal digits to be printed, the position of the decimal, the size of the field,
and the position of the digits within that field. Here’s a simple example that
shows how it works.

10 LET AS$S= " ###.0444"

20 PRINT USING A$; 355/113
30 END

OK

RUN
. 3.14l16

We left room for 3 digits, a decimal, and 4 more digits
We forced two spaces at the beginning of the “field”

Thus the field we specified is 10 positions wide.

In line 10 we used what's called a string variable, A$. This is a variable
in which characters are stored instead of numbers. The characters to be
stored are placed between quotation marks. In our example, the string A$
consists of two blanks, three pound signs (#), a decimal, and four more
pound signs. The blanks (or spaces) force spaces in the output field, while the
pound signs say exactly how many positions are available for digits before
and after the decimal.

If you wish, the two parts of PRINT USING can be written as a single
statement:

10 PRINT USING “ ##t# ####"; 355/113

There are other symbols that can be included in the format string, allowing
things like $,% or spaces to be made part of the output. Since these features
are not standardized, you'll have to read your own BASIC reference manual
to get further detail.

The PRINT USING and the TAB statements complement each other,
allowing you to produce just about any kind of output format. Let’s look at
an example that illustrates how both features might be used in the same
program.

Fractured Fractions

You have probably seen the fraction 22/7 used as an approximation for PI,
correct to 3 significant figures. The example just given used 355/113 as a
much better approximation. This raises the question of whether we could
find a fraction that does even better. A more general question is this: can we

SECTION 3.6 BAR GRAPHS; PIN BALL SIMULATION 135

find fractions that approximate any decimal number to any required
accuracy?

An Algorithm for Finding Approximating Fractions

The answer is that we can find fractions which produce decimal numbers to
any degree of accuracy. (However, if we use a computer, then there will be a
limit on accuracy imposed by the BASIC interpreter, which may not handle
more than 6 or 7 significant figures. To go beyond this limit requires
software with “multiple precision” arithmetic. Our example will illustrate this
by showing what happens on a system that allows 15 significant digits.)

The algorithm we'll use first generates what are called continued
fractions, which are like fractions within fractions within fractions, etc.

General Algorithm Example
Y, is the decimal we start with Y, = 2.55

Let R, = the integer part of Y, Ro = 2

1 1 1
= Y, = = =+ =181818...
Yi Yo—Ro YT 2.55-2 .55 81818
R, = INT (Y,) R, =1

1 1 1

= Y, = = =1.222...
Y Y.—R, 27 7818...-1 .81818... 2
R, = INT (Y2) R, =1
1 1

Ys Y,—R, *T 122241 222 .. 4.5000
R, = INT (Y5) R; = 4
In general, R; = INT (Y)) Y, = 1 _1_ 2

s i 45-4 .5

1

YH—I Yi'Ri R4 = 2

Since R, = Y. we have gone as far as we can.

The continued fraction then looks like this:

Yo=Roe + _ 1
R+ 1 255=2+ 1
R+ 1 1+1
Ri+.. 1 1+1—_”:—1
R, Iy

136

CONTINUED
FRACTIONS

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

Since a continued fraction is hard to use, we must next convert it to a simple
fraction. This is done by starting at the bottom and working up, using a

second algorithm as follows:

4 + 1_29 The fraction is now 2+ 1
2 2 1+1
1 +
1 -2
9 9
2
1+-2—-———E Now we have 2+ 11
9 9 1+ —
11
9
1_9
1 11
9
1+—9~—-2—Q So now we have 2+~1
11 11 20
11
11 _ 51

Finally, weget 2 + == = 2=
. wee 20 20

Here’s a listing of a computer program which combines these two

algorithms, followed by a run using 2.55 as input.

s N
LIST

ég E;E“:;i?;###########' HERE'S WHERE THE FORMATS
30 BS=" SHAGERRAIIEEST IN LINES 330, 350, AND 360 ARE DEFINED.
40 PRINT

50 PRINT “THIS PROGRAM CONVERTS DECIMALS TO FRACTIONS."
60 PRINT

80 INPUT Y

90 PRINT "HOW MANY LEVELS (1 TO 1ey»?”

160 INPUT T

110 PRINT

120 FOR A=l TO T

130 RCAI=INTC(Y+.00001)

140 IF ABS(R(A)-Y)<.00001 THEN 18&0

150 ¥=1/¢Y-RCA))

160 NEXT A

170 GOTO 190

180 T=a

190 PRINT RC1):3" + 1"

SECTION 3.7

200 FOR A=2 TO T-1
210 PRINT TAB(A*¥6-7); ~-ewwew-

230 NEXT A
240 PRINT TAB(T*#6-7)} " wmw==
250 PRINT TAB(T*6-6)3;R(T)
260 N=R(T)>

270 D=1

280 FOR B=T-1 TO | STEP -1
290 A=N

300 N=R(B)#*N+D

310 D=A

320 NEXT B

330 PRINT USING BS$,N

340 PRINT "% wecwemeccccnew- = "
350 PRINT USING A$,N/D

360 PRINT USING BS$,D

370 END

e

PRINT USING; FRACTURED FRACTIONS

220 PRINT TAB(A*6-6)3;RCAY;™ + 17

RUN

THIS PROGRAM CONVERTS DECIMALS T
? 2.55

HOW MANY LEVELS (1 TO 12>?

? 12

- -

4 + 1
2
51
E emmcemammeee- = 2.550000000
20

O FRACTIONS.

137

Here's a run of this same program on a system with a BASIC that has
“multiple-precision floating point arithmetic”. Up to 15 decimal digits of
accuracy can be handled by this system, which is why we used fifteen #

symbols in defining A%:

AS$ ="HBH HARBEHHRBHHH

Since we allowed for three digits in front of the decimal, this leaves room for
twelve digits after the decimal. As you can see, our final fraction was equal

to the decimal

3.141592653580

138

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

which agrees with the input decimal’s 12 significant digits. Since different
versions of BASIC have different “‘precisions” of arithmetic, you may not
obtain exactly the same results.

IR N T
RUN

THIS PROGRAM CONVERTS DECIMALS TO FRACTIONS.
7?7 3.14159265358

HOW MANY LEVELS (1 TO 12?7
? 12

........
........

- e - -

o+ 1
1+ 1
USE THIS TO IMPRESS YOUR FRIENDS o+ 1
=22, o =eseee--
WHO ONLY KNOW ABOUT m 2. 12 0+ 1
i
11359377
S cemcmmm————— = 3.141592653580
3615802
e B i, S

3.8 SAVING YOUR PROGRAMS

Now that your programs are getting a bit lengthy, you will be looking for
some method of storing them outside the computer’s memory for later use.
Three kinds of “external” storage are usually used: punched paper tape,
magnetic disk, and magnetic tape (usually in the form of cassettes or
cartridges).

Saving Programs on Paper Tape

Until lately a widespread (and cheap) way of storing programs externally was
on punched paper tape. The popularity of this method was due to the use of
terminals in schools and industry which had a paper tape punch and paper
tape reader built in. Here’s what the usual 8-channel paper tape looks like:

SECTION 3.8 SAVING PROGRAMS ON PAPER TAPE, DISK OR CASSETTE 139

AR CDEFGHIT JELMMOOP QRS TWVW DL
® ® ® ® e ® ® e ° . ® .] ® ® ®
e o ® @ e e ® e L ® © s o e o
e o & @ ® o @ @ e o 0o o o o o @
CRENC- NI B B ‘....Q'......0.....l.‘.......‘.'....'...D..C........'..
e © 8 © © © @ e o 0 06 0 0 6
® e © © @ @ @ 6 © & 0 0 & 0 0 @
@ © © 8 0 © @ © © 6 © © © © © © 9 0 0 & & & & 6 0 6 0 O 0 0 3 0
® ® ® o e o ° ® ® o ° o o * e
e ® 6 © 6 @ 8 6 © & & © 0 O o O
ee ©ee oo &0 00 66 00 00
ecoo sooe oeee soee
0.......00...............Q..C.'......‘...l
os000000 IIIIXIY
2600000000000000
©00000000000000000060000000008000
e © 066 60 o © ©06 0 o0 o oo

NOTE: The lower tape is spaced normally. The upper tape has “null” (no
punch) typed in between each character. The ASCII (American Standard Code
for Information Interchange) meaning of the punched codes is shown above it.

A chart of all these codes is given in Appendix B.
Paper tape has eight positions for holes but only seven are used for the bits

of the ASCII code. For example, for the letter L the ASCII code is

1001100
JI Ly

Parity bit Sprocket hole (not part of code)

The eighth punched hole (at the left) is called a “parity bit” and it's used to
make the total number of bits even for error checking (if the computer doesn't
find an even number of bits “on”, there’s an error).

Punching a paper tape copy of a program is only a little more

complicated than getting a listing. The main thing to keep in mind is that
when you later read the tape back in, the computer will react just as if
someone were typing the program into the terminal. So you should be careful
when you turn on the paper tape punch that whatever gets punched will be
acceptable when it is later read back in. That's the reasoning behind the

following steps:

140

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

1. Make sure the program you want to save is in memory. If your BASIC
has a NULL command, type NULL 3 (CR) (This puts 3 extra blank codes
at the ends of lines which makes the tapes easier to read later on.)

2. Switch the terminal to “local”.

Turn on the paper tape punch.

Hold down the “null” key to get a blank length of paper tape for a leader.

(On some terminals, a different key may have to be used, e.g., “here is”).

Turn off the paper tape punch.

Switch the terminal back to “line”.

Type the command LIST—do not type carriage return.

Turn on the paper punch; now type carriage return

- W

N>,

The computer will print out a listing, and it will be recorded on the
paper tape. When the listing and punching is finished,

9. Switch the terminal to “local”.

10.Hold down the “null” key to get a blank length of tape for a tail.

11.Turn off the paper tape punch.

12.Detach the paper tape, roll it up before it gets stepped on, label the leader
with the program name and date (it helps to know when to throw it out).
Rubberband it. (Adhesive type tape will get gummy on oiled paper tape in
time.)

What you have actually recorded on punched tape is:

carriage return,

line feed,

your program,

carriage return,

line feed,

'OK’ (or whatever your computer says when it completes a LIST).

Loading Programs from Paper Tape

Reading in the paper tape should be thought of like typing in a program.
Start by doing whatever your computer requires before typing in a NEW
program, then:

1. Insert your paper tape in the reader.

2. Turn on the reader, and sit back and watch.

3. Remove tape when finished, roll it up again before it gets stepped on.
Turn off reader.

Ignore the error message that may be triggered by the "'OK’ (or whatever)
that was recorded on the tape.

SECTION 3.8 SAVING PROGRAMS ON PAPER TAPE, DISK OR CASSETTE 141

4. To see what got read in, type LIST.

5. Examine the listing for obvious mistakes—paper tape readers have been
known to lose a bit here and there.

6. Make corrections in exactly the same manner as you would for a program
that had just been typed in.

In spite of the problems noted above, paper tape does provide a
reasonably reliable method of storing programs. Even if you have magnetic
storage, paper tape provides a good backup.

Saving Program Output on Punched Paper Tape

For those who have the paper tape reader-punch on their terminal, the
following trick is possible. When you need several copies of the same output
(to give to friends or decorate your wall, etc.) copy it onto punched tape.
Then, instead of recomputing this output, just read the tape with the terminal
on “local”.

Saving and Loading Programs on Disk

If paper tape is the least sophisticated way of getting data in and out of a
computer, magnetic disk is the most sophisticated. There are a number of
systems on the market which use a disk to save both programs and data. The
procedure described here is for an Altair with one floppy disk drive.

In addition to physically inserting and removing the disk, you must
“logically” connect and disconnect it using the commands MOUNT and
UNLOAD (not DISMOUNT as you might expect). This lets your computer
system know that the disk is there and allows it to do all the preliminary
operations that make data transfer so simple. After inserting the disk, you

type:
MOUNT 0 (This command is not needed on the TRS5-80 or Apple 1I)

(Zero is the number of the first disk drive. If you only have one, it’s zero.)
Before removing the disk at the end of a session, you type:

UNLOAD 0 (This command is not needed on the TRS-80 or Apple II)

After a disk has been mounted, you can save a program you have
written by simply typing

SAVE "DIET4” (On the Apple II use SAVE DIET4)

where DIET4 is the name under which you “file” the program. The computer

142

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

then takes care of finding a free space on the disk and storing your program
in it. Rules for naming files on this system are: (1) it must be one to eight
characters long, and (2) there can be no numbers or special characters as the
first character.

To see what programs (or data files) you have saved, type:

FILES (or CATALOG or CAT or DIR)

The computer will print out all the names of files on the disk currently in the
disk drive. A program already saved on disk is loaded into memory by
typing:

LOAD “DIET4” or RUN “DIET4”

In both cases the disk is searched for the file you name, memory is erased and
the file DIET4 is loaded into memory. In the second case, it is also
immediately run.

If you decide to change the name of a stored file, type:

NAME "DIET4” AS "DIET2”

You can get rid of a stored file by simply typing:

KILL “DIET2”

Some of the above commands (not MOUNT or UNLOAD) can be used
within a program. Read the reference manual for your computer before trying
any file commands.

Saving and Loading Programs on Cassette Tape

Cassette storage systems are at a level of sophistication in between punched
paper tape and disk. They are faster than most paper tape systems but slower
and less flexible than disk. Here is a procedure on an Altair cassette system
for saving a file you name “HAROLD":

1. Turn on the tape recorder and position the tape cassette to a free space.
2. Type CSAVE "HAROLD", do not type carriage return.
3. Start the tape recorder recording. Type carriage return.

Only the first character of HAROLD is used as the label of the saved file.
4. When the computer prints OK, turn off the tape recorder.
5. Write the file name and date on the cassette label.

To load files from cassette:

. Turn on the recorder, insert the cassette and rewind it.

. Type CLOAD “HAROLD", do not type carriage return.
. Press “play”. Type carriage return.

. When the computer prints OK, turn off the recorder.

W N e

SECTION 3.9 PROJECT IDEAS 143

The computer will clear memory, search the cassette tape until it finds the file
name HAROLD (just the first character) and load it into memory. If this
doesn’t work don't be surprised—cassette storage is sometimes erratic. Try
again.

3.9 PROJECT IDEAS

1. Write a program to print Pascal's triangle. This is a triangular pattern of
numbers which has 1's along the edges. All the other numbers have the
property that they equal the sum of the two numbers just above them in
the pattern. It also turns out that the numbers across row K give the
combinations of K things taken 0 at a time, 1 at a time, etc. For example,
row 5 has the numbers 1,5,10,10,5,1. If you think of these as giving how
many “combination sandwiches” are possible, first from 5 ingredients
taken O at a time (the null sandwich), then 1 at a time, 2 at a time, etc.,
you see that the total number of combinations is 1+5+10+10+1=32. Now
go back and look at the hot dog problem in Section 2.4 and you'll see that
we have discovered a new way of solving the same problem. It's a small
world.

Here's what a run of your program should look like:

B i e N N)

RUN

HOW MANY LEVELS (MAX.= 12>7 12

i 8 28 56 70 56 28 8 i
i 9 36 B4 126 126 84 36 9 i
f 10 45 120 210 252 210 120 45 10 i
1 11 55 165 330 462 462 330 165 55 1! i

1 12 66 220 495 792 924 792 495 220 66 12 1

T NN I I I e e

144

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

2. One of the difficulties with making graphs on an alphanumeric terminal is
that you can't always put the plotting characters exactly where they
belong. Sometimes it's better to leave out characters that would plot in
“bad” positions, and let the viewer mentally fill in what's missing. Write a
program that does this for a circle, with an output that “suggests” a
perfect circle. The equation for a circle of radius R is:

Y= SQR(R"R-X"X)

Since the SQR function only gives + values, you'll have to take care of
also plotting the - values. Here’s an example of what the output might
look like.

RUN

#*

L A T TR T e A S Y

#*

4

L B T T S S I T S S
#

LI A A O O R R R I N I S

SECTION 3.9 PROJECT IDEAS 145

3. Rewrite one of the programs from this chapter in minimal BASIC, using
remarks and indentations to clarify the program'’s structure. An example
showing some techniques that can be used is given below. On some comput-
ers you use a colon to get blank lines (e.g., 105:)

OORL IR IR LI ERL OERL O,
THE STYLE 100 REM WATCHER 28 SEFTEMRER 1977 JOHN M. NEVISON
105
CORNER 110 REM THIS FROGRAM IS & STYLED VERSION OF AN ORIGINAL

115 REM FROGRAM RBY T, DWYER ANDI' M. CRITCHFIELD.

120

125 REM REFERENCE: DWYERy T. AND CRITCHFIELDy M.» "RASIC AND
130 REM THE FERSONAL COMPUTERy" READINGs MASS?
135 REM ADNISON~-WESLEY FURLISHING COMPANY, 1978,
140

145 REM FRINT A TARLE AND A GRAFH OF A WEIGHT-WATCHER'S
150 REM FROGRESS. FRINT A CUSTOMIZED GRAFH IF ONE

155 REM I8 REQUESTED.

160

165 REM VARIARLES?

170 REM Avss e LOW END OF THE GRAFH

175 REM BevoooHIGH ENI OF THE GRAFH

180 REM A%,.. . ANSWER TO A QUESTION

185 REM Ie oo o tDIFFERENCE RETWEEN TWO WEIGHTS

1920 REM Teoss e INDEX VARTARLE

199 REM Seees«SUM OF THE WEIGHT LOST

200 REM We oo o FREVIOUS WEEK’S WEIGHT

205 REM Xas oo INTERVAL COUNTER

210

215 REM CONSTANTS:

220 LET G9 = 122 THE GOAL WETGHT
225 LET N9 = 12 ‘THE NUMRER OF WEEKS DONE
230 DIM W(LZ2)

235 FOR I = 1 TO N9

240 READI W(I) ‘THE WEEKLY WEIGHTS
245 NEXT I

250 DATA 153y 149.5y 147.5y 147.5y 145, 144,53, 141, 141.5, 139.25
255 DATA 139.5y 137.0, 138.5

260

260

270 REM MAIN FPROGRAM

275

280 G0 SUR 390 ‘PRINT TARLE

283 LET & = 100

290 LET B = 200

295 GO SUR 52 ‘FRINT GRAFPH

300

308 FRINT

310 FRINT "WANT A CUSTOMIZED GRAFH":

318 INFUT A% ‘X

320 IF A% <> "YE8" THEN 370

325 FRINT *WHAT IS THE SMALLEST NUMEBER THAT *#

330 FRINT *YOU WANT (INSTEAD OF 100)°3

335 INFUT A

340 FRINT *WHAT I8 THE LARGEST NUMBER THAT "3

345 FRINT *YOU WANT C(INSTEAD OF 200)°5

350 INFUT B

358 GO SUR 320 ‘FRINT GRAFH

3460 FRINT "WANT ANOTHER GRAFH"S

345 GO TO 3135 X

370

376 STOF

380

3895

146

CHAPTER 3 SIMPLE COMPUTER GRAPHICS

3920 REM SUBROUTINE:? PRINT TARLE

395 REM INY Gr WO

400 REM ouT?

408

410 PRINT "WEIGHT WATCHER’S RECORD®

413 PRINT

420 FRINT “"WEEK®"s °"WEIGHT", °DIFFERENCE"
425 LET § = ¢

430

435 FRINT 1 W(1)y O

440 LET W = W(1)

445 FOR I = 2 TO N%

450 LET I = W(I) ~ W

455 LET 8§ = 8§ + I

460 FRINT Is W(I)» D

4465 LET W = W(I)

470 NEXT I

475

480 FRINT

485 FRINT "AVG. WEEKLY LOSS "$ &/ 1 i TPOUNDS®
490 FRINT "FOUNDS TO GOAL "3 W-G9

493 FRINT *TOTAL POUNDS LOST S0 FAR *5 §
500 FRINT

50%

510 RETURN

515

“520 REM SUBROUTINE! FRINT GRAFH

525 REM IN:D As By WO

530 REM ouT:

535

540 REM FRINT THE HEADING LINE 1y THE HEADING LINE
5435 REM ANDN THE LINES OF THE GRAFH.

550

559 FRINT "WEIGHT WATCHER‘S GRAFH®

560 FPRINT

565

570 LET X = 0

575

580

585 FOR I = A TO R STEF 10

590 FRINT TAB(XXSG0% (10/(B-AY) + 55 I
595 LET X = X + 1

4600 NEXT I

605 FRINT

610

615 FRINT *® I

620 FOR I = 1 TO (X-1)

625 FRINT TARCIX30X (10/(B~AY) + 735 "%
430 NEXT I

635 FRINT

440

545 FOR I = 1 TO N%

450 FRINT I TARB(4)5 “1%"F TAR(W(II~A) X(50/ (B~
455 NEXT I

660

465 RETURN

4670

675 ENIN

29

AYY + b)F

SECTION 3.9 PROJECT IDEAS 147
100 REM CHAPTER 3, PROJECT IDEA #4
165 REM
110 REM WRITE A PROGRAM THAT CONSISTS ENTIRE-
120 REM LY OF REMARK STATEMENTS AT FIRST.
125 REM
130 REM THEN EXPAND THE REMARK IDEAS
140 REM INTO BLOCKS OF EXECUTABLE STATEMENTS
155 REM
160 REM EXAMPLE
170 REM
199 REMrw e cm e e c e e e o
200 REM BLOCK 200 STATEMENTS ARE TO READ
201 REM IN WEEKLY STOCK PRICES OVER YEAR
299 REMmemomor me e cn o e o e e e e
300 REM BLOCK 300 STATEMENTS ARE TO PRINT
301 REM A TABLE OF PRICES FOR EACH WEEK
399 REMreemacmercr e ce cc e c e e mm o
400 REM BLOCK 400 WILL FIND MAX AND MIN PRICES
499 REMe e ccmemmcn v me mm v e m - —— - -
500 REM BLOCK 500 WILL ASK THE USER HOW MANY
501 REM COLUMNS ARE AVAILABLE FOR A GRAPH
502 REM AND THEN CALCULATE SCALE FACTORS
599 REMmemeem ;o cc e e c e e -
600 REM BLOCK 600 WILL MAKE A GRAPH OF PRICES
699 REMemwemmamercmrce e mem e e e mcc—c—— e ——— -
999 END

20 PRINT "MARY"

90 PRINT X

10 FOR I = 1 TO 100 STEP 2

=95 GOTO 50

40 IF X > Z THEN 70

/ SO}EXT I /

A BIT OF
ADVANCED BASIC

430 FOR F = 1 TO 3: PRINT TAB(13*(F-1));:;AS(P(R),F);: NEXT F: PRINT

320 IF NOT(A>X OR B<Y) THEN PRINT "OUT OF RANGE": GOSUB 2500
ELSE PRINT "IN RANGE": GOSUB 3500

550 FOR K = 1 TO N: INPUT A(K): PRINT A(K): NEXT K

200 DIM A(100), K(20,10), NS(40,5) \ \ \
yd /£ / \
/ / / 800 HGR: HCOLOR = 1 \\
810 FOR A = 0 TO 12.6 STEP .05 __

820 HPLOT 22*A, 79.5-79.5*SIN(A)
830 NEXT A\ \

4.0 INTRODUCTION

The features of BASIC covered in the first three chapters allow one to write pro-
grams for a large variety of applications, including some that are quite complex.
In particular, just about any “number crunching” program (one that uses arith-
metic operations to manipulate numerical data) can be written in minimal
BASIC. However such programs can become very long, and difficult to under-
stand. One soon gets the idea that it would be valuable to have additional
BASIC statements that express complex ideas in a more structured form.

Another limitation of minimal BASIC is that it doesnt allow you to
manipulate text (such as words, sentences, or paragraphs) with the same ease as
numbers. A third problem is that minimal BASIC (like most other professional
computer languages) was not designed to handle graphical output of the type
now possible on video terminals and home color television sets.

To overcome these deficiencies, BASIC has been gradually expanded over
the years, resulting in a version that is often called extended BASIC. Some of
the best-known extended BASIC languages are BASIC-PLUS, Microsoft
BASIC, TRS-80 Level II BASIC, PET BASIC, and APPLESOFT BASIC.

In this chapter we'll summarize the most important features of extended
BASIC in section 4.1. Then in sections 4.2 and 4.3 we’ll show you how to write
two useful sorting programs that use some of these features. In section 4.4 we’ll

149

150 CHAPTER 4 A BIT OF ADVANCED BASIC

look at the special graphing features of Radio Shack TRS-80 Level II BASIC.
Finally, in section 4.5, we'll explain how to use the high resolution color graph-
ics features available on the Apple Il computer.

4.1 AN OVERVIEW OF EXTENDED BASIC

A number of the features of extended BASIC were illustrated in project 4 at the
end of section 2.9. In this section we'll explain these features in further detail,
and describe several new ones.

Multiple Statements

One of the simplest features of extended BASIC to use when you wish to
shorten programs is the multiple statement. A multiple statement is formed by
placing several statements on the same line, separating them with colons.
Another abbreviation that’s permitted is to omit the keyword LET in assign-
ment statements. For example, using these two features, the following three
statements of minimal BASIC

10 LET X = 104.5
20 LET N = 10
30 LET Z9 = 35

can be written as the multiple statement
10 X =104.5: N=10:Z29=35

in extended BASIC. You can interpret the colon as the word “and”, reading this
statement as “LET X = 104.5 and LET N = 10 and LET Z9 = 35".

Use of the colon should not be overdone, otherwise programs become diffi-
cult to read. In particular, it's poor practice to use the colon to string statements
together that have no logical connection. On the other hand, putting related
statements on the same line can improve readability. For example, the following
short FOR loop reads well as a multiple statement:

85 FOR J=1 TO 10: B(J) =J"]: NEXT]

This statement stores the squares of the first ten integers in the B arrray, so
after the statement is executed you'll have B(1) = 1, B(2) = 4, B(3) = 9, and
so on up to B(10) = 100.

STRINGA

SECTION 4.1 AN OVERVIEW OF EXTENDED BASIC 151
String Variables and String Arrays

The variable names we've seen so far (such as X, A, B(14), and N3) refer to loca-
tions in the computer’s memory where numbers are stored. Strictly speaking
they should be called “numeric variables”.

To allow programmers to store non-numeric data—letters, words, sen-
tences—extended BASIC also allows what are called string variables. These are
indicated by adding a dollar sign to a letter. Examples are A$, B$, X$, and W$.

In computer programming, the word string means any sequence of charac-
ters. To show where the sequence starts and stops, quotation marks are used.
Examples of strings are “BOB”, “PLUTONIUM-88", “35 MAIN ST.”, or even
“##1l@ A8!”. Each of these is an example of a string constant that can be stored
in a string variable.

To store a string constant in a string variable, you can use a LET statement

like this:

20 LET A$ = "WHAMO”
Strings can also be stored by using READ and DATA statements as follows:

100 READ N$, M$
500 DATA “SUZIE”, MIKE”

A third way to store strings in variables is to use the INPUT statement:

150 INPUT A$, B$, C$

For an example showing how to use the INPUT statement with string variables,
re-study the program HI NAME of section 2.0.

The better extended BASIC languages also allow string arrays. These allow
you to store a whole collection of strings in subscripted string variables such as
A%(5), B$(20), or Z$(15). Here's an example showing how to use a string array
called W$().

100 REM **a&khkkhkahkhkhhhhdhdhkhhhhdhhhhhhhhhhhhhhhhhhhhhk

102 REM * STRINGA (STRING ARRAY DEMONSTRATION) #
105 REM * Kk kkhkhhkhkkk ke k kAR AR AR AR AR R IR AR R AR AR AR A AR R R A

110 DIM W$(21)
120 PRINT "AFTER EACH ? TYPE ONE WORD OF A SENTENCE."
130 PRINT "TYPE A PERIOD WHEN DONE. LIMIT IS 20 WORDS."

140 REM -~~=- INPUT WORDS INTO STRING ARRAY -——==-
145 K=1

150 IF K>20 THEN 210

160 PRINT "WORD # "; K;

170 INPUT WS (K)

180 IF W$(K)= "." THEN 200
185 LET WS (K)=W$(K) + " "
190 K=K+1

195 GOTO 150

152 CHAPTER

200
210
220
230
240
250
260

RUN
AFTE

TYPE
WORD
WORD
WORD
WORD
WORD

HERE
.PRE

DONE

4 A BIT OF ADVANCED BASIC

REM -—=== PRINT WORDS IN REVERSE ORDER —wm--

PRINT: PRINT "HERE“S YOUR SENTENCE BACKWARDS:":

FOR J=K TO 1 STEP -1
PRINT WS (J);

NEXT J

PRINT: PRINT: PRINT "DONE"

END

R EACH ? TYPE ONE WORD OF A SENTENCE.

A PERIOD WHEN DONE. LIMIT IS 20 WORDS.
? DOCTOR

? LIVINGSTONE
?2 I

? PRESUME

?

o e A Ak e
U b W N

“S YOUR SENTENCE BACKWARDS:

SUME I LIVINGSTONE DOCTOR

PRINT

A good way to understand how this program works is to visualize the

string array as a block of memory locations organized as follows:

W$(1) DOCTOR
W$(2) LIVINGSTONE
WS(3) 1

W5(4) PRESUME
WS§(5)

W$(6)

W$(20)

The first part of the program uses the subscripts K=1, 2, 3, 4, 5 to store the
words (strings) input by the user in the variables W$(K) in the order shown.
Each string can be up to 255 characters long. The second part of the program
then prints the words in the reverse order by using the subscript] =5, 4, 3, 2, 1
to print the strings W$(J) from the same W$ array. This is the real power of
string arrays; you can use a variable subscript to both store strings and to re-
trieve them.

SECTION 4.1 AN OVERVIEW OF EXTENDED BASIC 153

A special string operator called concatenation (written as +) was used in
line 185. This operator is used to put two strings together as a single string. For
example, with concatenation “RAT” + “CAT"” becomes "RATCAT”. In our
demonstration program we used concatenation in the form WH(K) + 7 “ in
order to add a space to each word. This was done so that the backward sentence

would be printed with spaces between words.

Doubly Subscripted String Arrays

Double subscripts can be used on numeric variables to indicate the row and
column in a block of variables. To see what this looks like, take another look at
the last part of section 3.5 where we showed a diagram picturing a block of loca-
tions for the numeric array A(I,]). In that example, letting A(3,2) = 499 meant
storing the number 499 in the third row and second column of the array A(I,]).
In general, A(I,]) holds the data for the Ith row and Jth column of the array.

In a similar manner, you can store string data in a two-dimensional string
array. For example, an array N%(I,]) might hold data as follows:

SMITH, JA | 487-2906 | CHEMIST
JONES, BE | 382-1342 | BIOLOGIST
ABLE, CB 563-4412 | CHEF
FUERST, CJ | 123-4567 | PILOT

Each row in this array is used to hold related information about one per-
son. The first column is used to hold the person’s name, the second, the person’s
telephone number, and the third his or her occupation. In BASIC you can store
this information in an array such as N%(I,]) by using LET statements, INPUT
statements, or DATA statements. For example, LET N$(2,3) = “BIOLOGIST”
would put the string “BIOLOGIST” in the second row, third column of N%(I,J).
The same result can be had either by using the statement READ N%(2,3) com-
bined with the statement DATA “BIOLOGIST”, or by using INPUT N$(2,3) in
the program, and then typing BIOLOGIST after the 7 produced by the INPUT
statement.

In most programs, a number of strings will have to be stored in memory, so
instead of READ N$%$(2,3) or INPUT N%(2,3), the statement will more likely be
READ N$(I,]J) or INPUT N%(I,]). In this case I and] will be determined by two
FOR loops used as shown in the program ARRAY DEMO 2 at the end of section
3.5. A complete example showing the use of string arrays for storing and sorting
data will be given in section 4.3.

154

CHAPTER 4 A BIT OF ADVANCED BASIC

The Extended IF statement

The IF statement can be extended in three ways. The first is to allow one or
more statements after the word THEN (instead of a line number). Here are two
examples:

15IFX > 1I0THENLETY = 5 * 10
25 IF E = 0 THEN PRINT “OUT OF ENERGY": LET E = 100: GOTO 99
30 PRINT “ENERGY NOT ZERO": GOTO 99

In the second example, the colon is used to link together three different state-
ments which are to be executed when the conditon E = 0 is true. When the con-
dition is false, none of these statements are executed; the program goes on to the
next numbered statement (line 30 in our example).

The second extension of IF . . . THEN uses the word ELSE to show what
should be done when a condition is false. Again, colons can be used to group
several statements together.

350 IF X > 9 THEN PRINT “TOO LARGE": X=X—1
ELSE PRINT “RESULTS O.K.": S=5+X

The third extension is to allow several conditions to be used in the condi-
tional part of the IF statement, provided they are joined by the “logical” connec-
tives AND, OR, and NOT. For example,

150 IF X =9 AND Y =9 THEN 2000
This means that if both conditions are true then branch to line 2000.

60 IFE <20 OR T > 99 THEN 3000

SECTION 4.1 AN OVERVIEW OF EXTENDED BASIC 155

This means that if either condition is true then branch to line 3000.
70 IF NOT (X =9 AND Y =9) THEN 4000

This means that if it's not true that both X =9 and Y =9, then branch to line
4000.

What To Do If You Don't Have Extended BASIC

Many of the extended statements we've shown so far can be re-written in mini-
mal BASIC by using several simpler statements. Here are some examples show-
ing how the extended statements just shown can be translated back to minimal

BASIC.

Most multiple statements can be translated into minimal BASIC by writing
a new line for each colon (:). For example, the FOR loop

85FOR J=1TO 10: B(J)=]*]: NEXT]
can be written as:

85 FOR J=1TO 10
86 B(J) =]J+]
87 NEXT]

TheIF . . . THEN followed by multiple statements (line 25 above) is a little
trickier to translate.

25 IF E=0 THEN 50

30 PRINT “ENERGY NOT ZERO”

35 GOTO 99

50 PRINT “OUT OF ENERGY”

55 LET E=100

99 REM CONTINUE PROGRAM HERE

TheIF . .. THEN . . . ELSE statement (line 350 above) gets translated in a
similar manner:

350 IF X > 9 THEN 380

355 REM ELSE BLOCK

360 PRINT “RESULTS O.K.”

365 LET X=5+X

370 GOTO 400

375’

380 REM THEN BLOCK

385 PRINT “TOO LARGE”

390 LET X=X=1

400 REM CONTINUE PROGRAM

156

CHAPTER 4 A BIT OF ADVANCED BASIC

The apostrophe used in 375 is a shorthand for REM allowed in some BASICs.
We used it just to space things out for readability. You can also use 375 REM, or

just omit this line.
Here's how the AND connective (line 150) is translated:

150 IF X =9 THEN 170

160 GOTO 180

170 IF Y =9 THEN 2000

180 REM AT LEAST ONE CONDITION NOT TRUE IF AT THIS LINE (etc.)
2000 REM BOTH CONDITIONS TRUE IF AT THIS LINE (etc.)

The OR condition (line 60) is translated as follows:

60 IF E < 20 THEN 3000
65 IF T > 99 THEN 3000

The logical NOT can be eliminated by using the complementary condition.

NOT X=9 becomes X <> 9
NOT X< 9 becomes X > =9
NOT X>9 becomes X <=9

and so on. When NOT modifies a group of conditions then some laws of logic
(De Morgan's laws) tell us that we must use the complementary conditions and
also interchange AND with OR (and vice versa). So

70 IF NOT (X=9 AND Y =9) THEN 4000
should be rewritten as

70IF X <> 9 OR Y <> 9 THEN 4000
This can then be written in minimal BASIC as

70 IF X < > 9 THEN 4000
71IFY <> 9 THEN 4000

Other Features of Extended BASIC

There are quite a few other features of extended BASIC, and new ones are being
added each year. These include a variety of string functions, special input and
output statements for dealing with “joystick” control, and an extensive set of
disk file statements. Further information on these statements and examples of
the use of all the features of extended BASIC can be found in BASIC and the
Personal Computer (Addison-Wesley, Reading, Mass. 01867).

SECTION 4.2 USING EXTENDED BASIC: INSERTION SORT 157
4.2 USING EXTENDED BASIC: INSERTION SORT

An algorithm is like a recipe. It gives a set of exact instructions on how to take
input “ingredients”, and transform them into something different (the output).

} To be more precise, an algorithm is “a finite set of rules which gives a
sequence of operations for solving a problem”. Algorithms have five properties:

o (1) They must stop after a finite number of steps.
i (2) Each step must be unambiguous, that is, have only one meaning.
(3) Algorithms accept zero or more inputs.
(4) Algorithms produce one or more outputs.
62 (5) They are effective, that is, each step can be done on a finite machine in a
finite time.

m To satisfy property (2), algorithms have to be expressed in unambiguous lan-

&_’2 guages like BASIC. Correct BASIC programs are really algorithms expressed in

a special form.
An important class of algorithms used in computing has to do with the
problem of sorting. Sorting is the process of putting a list of things in order. The

o . . . s
/Sk % list may contain numbers, and look like this
L= | =
— INPUT: 2.34, 7.8, -2, 3.2

Sorted in increasing order, this list becomes:

OUTPUT: -2, 2.34, 3.2, 7.8

|

&M
The Jo
Algorithms
We can also sort alphabetic data, like this:

8@ % INPUT: Zeke, Abe, Sally, Charlie

g Sorted alphabetically, this list becomes:

—) OUTPUT: Abe, Charlie, Sally, Zeke

There are many algorithms for sorting. Most of them depend on comparing
items in the list and then swapping pairs of items. This process must be repeated
fﬁ 4 many times to sort a large list. This means sorting can take lots of computer

i
\\”_ﬂ/_’_) time. Let’s look at the problem more closely.

Insertion Sort

In this section well study the insertion sort algorithm, so called because it is
similar to the sorting procedure used by card players when they insert new cards

158

CHAPTER 4 A BIT OF ADVANCED BASIC

into a hand of cards. It is a very efficient algorithm for sorting small batches of
items—up to about 100. However, every time you double the number of items
to be sorted, the time required to do the sorting could increase by about a factor
of four.” So if sorting 50 items takes 10 seconds, sorting 100 items will take
about 40 seconds, 200 items will take about 160 seconds, 400 items, 640 sec-
onds, and so on. When there are hundreds (or even thousands) of items to be
sorted, other algorithms are usually preferred. Two of these (Shell Sort and
Quicksort) are referenced in the exercises.

We'll first describe insertion sort in general terms, and then show how the
algorithm translates into BASIC. Imagine that you have a hand of cards labeled
with the values shown, and that at the present time they are organized as fol-
lows:

]
§
16>
g
ER
v e,
58 -
41
w
25 "
-=- Sorted —-—"4—-—— To be Sorted —

/
i

Our picture shows the hand at a time when it has been partially sorted.
The goal is to successively take cards from the right side starting at position
J, and insert each one into it's proper place on the left side. In our example, we
want the cards to eventually be ordered 13, 24, 25, 33, 41, 58, 62, 77, 81, 97.
To see how to proceed, assume that you have reached the point shown
where the three cards to the left of the dashed line are already properly ordered.

*This rule assumes that the items are randomly ordered before sorting (see the SELF-TEST ques-
tions at the end of this section for more on this).

INSERT

SECTION 4.2 USING EXTENDED BASIC: INSERTION SORT 159

We'll use the variable] as a pointer to the position at the right of this dashed
line. Our picture is shown after some sorting has already taken place, and] = 4.

The variable I is used to “point” at successive cards to the left of this bound-
ary (for I=3, 2, 1). The card at] will then be compared with each of these
cards. When we find a card at position I such that the card at] is greater than or
equal to the card at I, we will insert card J just to the right of card 1. For the
cards in our picture here’s what will happen:

For J=4, CARD(J) =33

Now LET I=3. Is CARD(J) > = CARD(I)? No.
LET I=2. Is CARD(J) > = CARD()? No.
LET I=1. Is CARD(J) > = CARD(I)? Yes.

Therefore we will insert CARD(J) to the right of CARD(I). This puts
CARD(4) just to the right of CARD(1).

To make this algorithm work in BASIC we'll store the unsorted card num-
bers in an array with elements called R(1), R(2), R(3), . . ., R(N). We'll start
with the dashed line to the right of the first card, so] = 2 at the beginning. Then
forJ=2, 3,4, ..., Nwell apply the insertion algorithm just described.

One question that will arise is “How do you insert into an already filled
array?” The trick we'll use is to first store the card number at] in a temporary
variable by writing T = R(J). Then each time we don't do an insertion, we’ll
move a card number over to the right by using the statement R(I + 1) = R(I).
That way we’ll be making room for the eventual insertion of the Jth card when
we write RI+1)=T.

Here's a BASIC program that employs this algorithm. It starts by using the
random number generator in line 20 to fill up the R() array. The insertion sort
then takes place in lines 30 to 130. The sorted numbers are printed in line 190.

4 REM AR KRR R R R A AR R AR AR AN RRAA AR AR AR AR AR A A Atk bk hhhh bk Xk

5 REM * INSERT (INSERTION SORT USING RANDOM NUMBERS) *

6 REM IR R R R R R R R R 2222222222222 223 3322322222 2222 22 s s

9 DIM R(160)

10 PRINT "HOW MANY NOS. TO BE SORTED";: INPUT N

12 IF N<1 OR N>160 PRINT "MIN IS 1, MAX IS 160":GOTO 10

13

14 REM -~~--~ PUT RANDOM NUMBERS IN R{)} AND PRINT THEM -----
15 FOR K=1 TO N: R(K)=RND(0): NEXT K: REM--USE RND(1) ON APPLE
20 PRINT "NUMBERS TO BE SORTED ARE:": GOSUB 910: PRINT

22 :

23 REM --=-- START THE MAIN LOOP OF THE INSERTION SORT --—--
25 IF N=1 THEN 180

30 FOR J=2 TO N

70 I=J-1l:; T=R({J)

75 REM ~-==-= START OF I LOOP FOR INSERTION -~===-

80 IF I<=0 THEN 120

A BIT OF ADVANCED BASIC

CHAPTER 4

160

R(I) THEN 120

R{I+1)

IF T>

85

R(I)

1
GOTO 80

REM

I=I-

100
110
120
125

END OF I LOOP FOR INSERTION

=T

R(I+1)

130 NEXT J
140 REM

150

END OF THE MAIN LOOP FOR INSERTION SORT -—----

.
.

NOW PRINT THE SORTED NUMBERS

TE>55>5>>>>

170 REM
180 PRINT

SORTED NUMBERS ARE >>>>>>>>>"

190 GOSUB 900
200 END

210 REM

900 REM

910 FOR K

920
930

SUBROUTINE TC PRINT IN 3 COLUMNS OF WIDTH 13

1 TON
3*INT((K
PRINT TAB(13* (T~

1)/73)

T=K~

)

K

(

R

.
!

1))

|
2
[
[+
ay
z
=]
o]
B
™
[
% Mz
0
SRS]
4 X EH
Y £
Z
oo
N O
A O O

RUN

? 11

TO BE SORTED

HOW MANY NOS.

NUMBERS TO BE SORTED ARE

.862675

787762
.476059

.888076

55141
968336

.735285

°

242171
.592453
SORTED NUMBERS ARE >>>>>>>>>

245708
.721014
>>>>55>>>

.245708 .476059

.242171
.55141

.721014

.592453

.787762 .862675

.735285
.888076

.968336

SECTION 4.3 USING STRING ARRAYS AND POINTERS 161

4.3 USING STRING ARRAYS AND POINTERS TO
SORT BUSINESS RECORDS

Business data is often organized as a collection of records, where each record
consists of several related pieces of information. These pieces are put in separate
fields of the record. For example, records might be organized into three fields
that contain a person’s name, phone number, and occupation.

Field 1 Field 2 Field 3
Record 1: SMITH, JR 123-4896 ARCHITECT
Record 2: JONES, AB 452-1234 PLUMBER

A good way to store such records is to use a two-dimensional string array.
If the array is called A%(,) then the element A$(R,F) refers to the Rth row (rec-
ord), and Fth column (field).

If we have a large collection of such records—say 100—and wish to retrieve
information from this collection, then it would be valuable if we could print
three sorted lists: one sorted by name, one sorted by phone number, and one
sorted by occupation.

To do this we could use a sorting algorithm similar to the insertion sort
described in the previous section. The problem is that moving all that string
data around tends to slow down the algorithm considerably. To get around this
problem, an elegant modification of the insertion sort can be employed. The
idea is to set up a separate numeric pointer array P(I), and use it to tell us how to
print the rows of A%(1,]) in proper order. For example, suppose the 7th record
(row) should be listed in fourth place when doing an alphabetic ordering of
occupations. Also suppose our program somehow or other made P(4) = 7. Then
if we write

10 PRINT “THE FOURTH RECORD (ORDERED BY OCCUPATION) IS:”
20FORF=1TO 3

30 PRINT AS$(P(4),F);

40 NEXT F

we'll see the computer print the seventh record. To make this work for a com-
plete alphabetical listing, our program must adjust all the values in the P()
array so they point out the correct ordering. Then we can use a FOR loop to
print all the records (not just the fourth one) in proper order.

162

INSERT 2

CHAPTER 4 A BIT OF ADVANCED BASIC

Here's a sorting program that is based on this idea. It first reads string data
for the records from DATA statements into the array A$(,). It next asks you
which field you want to use for sorting. A modified insertion sort is then used to
adjust the values in the pointer array P(), and the results are printed out in in-
creasing order in lines 410 to 440.

The modification of the insertion sort consists in using the string data for
comparisons but not for insertions. The comparison is written as:

IF A%(T,E) > = AS%(P(I),F) THEN 380
However all the insertions are done in the pointer array P() with the statements

PI+1) =PI
and PO+1)=T

This process will put exactly the right numbers in P(), and we'll then be able to
print the records in order, provided we print AS(P(R),F) instead of A$(R,F).

This is a rather advanced program, so don't be surprised if you have to do a
lot of thinking and re-thinking to understand fully how it works. Here's the pro-
gram with three sample runs:

100
101
102
105
110
120
130
140
150
160
170
180
190
200
201
202
210
220
230
300
301

302 °

310
320
330
340
350
360
370
380

REM IRAAEIRAKRI AR AT R AR I AR AR AR R bR ARk bk hhhhhhhhkhhhhhhhh

REM * INSERT2 (INSERTION SORT OF RECORDS USING POINTERS) *
REM *hhkhh ke h ke kAR kA kKA AR AR AR R AR R AR R ARk kh ke hkk
PRINT "STAND BY FOR INITIALIZATION"
DIM A$(10,4), P(10) :N=0
FOR R=1 TO 10
FOR F=1 TO 3
READ AS$(R,F)
IF A$(R,F)="$" THEN 190
NEXT F
N=N+1
NEXT R
FOR I=1 TO N: P(I)=I: NEXT I

PRINT "SORT RECORDS USING WHICH FIELD (1,2,3)";: INPUT F
IF F<1 OR F>3 THEN 210
IF N=1 THEN 410

“ SORTING ROUTINE USING INSERTION SORT AND P({) ARRAY
FOR J=2 TO N

I=J-1: T=P(J)

IF I<=0 THEN 380

IF AS(T,F) >= AS$(P{I),F) THEN 380

P{I+1)=P(I)

I=I-1

GOTO 330

P(I+1)=T

390
400
401
402
410

SECTION 4.3

PRINT ">>>>> RECORDS SORTED ON FIELD #";F;"

USING STRING ARRAYS AND POINTERS

>>>>>" : PRINT

163

420 FOR R=1 TO N
430 FOR F=1 TO 3: PRINT TAB(13*(F-1));AS$(P(R),F);: NEXT F : PRINT
440 NEXT R
999 STOP
1000 “-—--- STRING DATA FOR RECORDS —-----
1001 DATA "SMITH, AB", "423-5436", "WRITER"
1002 DATA "EINSTEIN, A", "509-2541", "PATENT CLERK"
1003 DATA "SAWBONES, R", "976-2758", "SURGEON"
1004 DATA "BARON, RED", "708-1852", "PILOT"
1005 DATA "ATTILA, HN", "800-1234", "ADMINISTRATOR"
1999 DATA nsn'nsulnsn
RUN

STAND BY FOR INITIALIZATION
SORT RECORDS USING WHICH FIELD (1,2,3)2 1

>>>>> RECORDS SORTED ON FIELD # 1 >>>>>
ATTILA, HN 800-1234 ADMINISTRATOR
BARON, RED 708-1852 PILOT
EINSTEIN, A 509-2541 PATENT CLERK
SAWBONES, R 976-2758 SURGEON

SMITH, AB 423-5436 WRITER

RUN

STAND BY FOR INITIALIZATION
SORT RECORDS USING WHICH FIELD (1,2,3)? 2

>>>>> RECORDS SORTED ON FIELD # 2 >>>>>
SMITH, AB 423-5436 WRITER
EINSTEIN, A 509-2541 PATENT CLERK
BARON, RED 708-1852 PILOT

ATTILA, HN 800-1234 ADMINISTRATOR
SAWBONES, R 976-2758 SURGEON

RUN
STAND BY FOR INITIALIZATION
SORT RECORDS USING WHICH FIELD (1,2,3)? 3

>>>>> RECORDS SORTED ON FIELD # 3 >>>>>
ATTILA, HN 800~1234 ADMINISTRATOR
EINSTEIN, A 509-2541 PATENT CLERK
BARON, RED 708-1852 PILOT
SAWBONES, R 976-2758 SURGEON

SMITH, AB 423-5436 WRITER

164 CHAPTER 4 A BIT OF ADVANCED BASIC

4.4 MEDIUM RESOLUTION GRAPHICS
ON THE TRS-80

In chapter 3 we saw how to produce graphical output in BASIC by using the
TAB(X) function. The plotting symbols used were alphanumeric characters
such as “*" or “I”. Since only a limited number of characters can be printed in a
given space, these graphs are sometimes called “low-resolution”.

On the TRS-80 computer there is an additional plotting feature available in
the form of the BASIC statement SET(X,Y). When this statement is executed, it
causes a small white rectangle to be printed on the output screen, X units to the
right, and Y units down (positions are given with respect to the upper left-hand
corner of the screen which is the position for X=0 and Y = 0).

The rectangle is about one-fourth the size of a regular character. Rectangles
can also be plotted in the spaces between lines, so graphs of finer resolution are
possible. Overall, there are 128 plotting positions for X (numbered 0 to 127),
and 48 plotting positions for Y (numbered 0 to 47). Thus a maximum of 128 X
48 = 6,144 rectangles can be plotted on the screen (as opposed to 1,024 charac-
ters).

Here’s a simple TRS-80 Level II BASIC program that plots four lines in a
tic-tac-toe pattern by using SET(X,Y) in four loops.

4 ° R AR AR AR AR R Rk AR R AR AR AR R R R R R AR R A R R AR R R AR AR R AR R AR AR A
TICTAC 5 7 * TICTAC (DEMO OF SET(X,Y) ON TRS-80) *

6 © RE R A AR R R AR R AR AN R AR R R A R R A AR AR R AR R R R AR AR R AR AR R AR A RAR

7 CLS

10 y=15

20 FOR X=0 TO 127: SET(X,Y): NEXT X

30 ¥=31

40 FOR X=0 TO 127: SET(X,Y): NEXT X

50 %x=42

60 FOR Y=0 TO 47: SET(X,Y): NEXT Y

70 X=85

80 FOR v=0 TO 47: SET(X,Y): NEXT Y
90 END

SETSINE

SECTION 4.4 MEDIUM RESOLUTION GRAPHICS ON THE TRS-80 165

Run of TICTAC

When this program is run, the output will be as shown in the photograph.
If you don’t want the READY message to appear after the graph is finished, add
the statement 85 GOTO 85. This freezes the picture by putting the computer in
an infinite loop. To get out of this loop on the TRS-80 press BREAK (on other
computers press CTRL and C simultaneously).

Graphs of mathematical functions can also be displayed with SET(X,Y),
provided the graph is scaled to fit in the 128 by 48 grid pattern used by
SET(X,Y). Here's an example showing the SIN (A) function plotted for A going
from O to 12.7 radians (from 0 to about 720 degrees). Before studying the pro-
gram, it would be a good idea to review the discussion of scaling in section 3.4.
The scaling is done in lines 120 and 130 of this program. The scale factor in line
120 makes X go from 0 to 127. The scale factors in line 130 were chosen so that
when SIN(A) goes from +1to —1, Y goes from O to 47.

P kA RARKRAERERRAFAF AR AT AR AR R R A AR kA h kT Rk h &k

o SETSINE (TRS-80 SINE GRAPH) *

- ***

CLS

REM ccoooe DRAW VERTICAL AXIS WITH "I

FOR V=1 TO 15: PRINT "I": NEXT V: PRINT "I";

REM ...0- DRAW HORIZONTAL AXIS WITH -7

REM PRINT @ 0 MEANS PRINT AT THE BEGINNING OF THE FIRST LINE.

166 CHAPTER 4 A BIT OF ADVANCED BASIC

60 REM SINCE THERE ARE 64 CHARACTERS PER LINE, PRINT @ 64 MEANS

70 REM PRINT AT BEGINNING OF SECOND LINE, PRINT € 128 MEANS PRINT
80 REM AT BEGINNING OF THIRD LINE, ETC. TO PRINT HORIZONTAL AXIS
90 REM AT 8TH LINE WE THEREFORE USE PRINT @ 512 AS FOLLOWS:

100 PRINT @ 512, "8%";

110 FOR H=1 TO 62: PRINT "-";: NEXT H
115 -
120 REM NOW DRAW SINE GRAPH USING SET(X,¥)

130 FOR A=0 TO 12.7 STEP .05

140 X=10%*a

150 ¥Y=47-23,5% (SIN{A}+1)

160 SET(X,Y)

170 NEXT A

180 PRINT @ 862, "PRESS BREAK TO EXITY;
190 GOTO 190

200 END

Run of SETSINE

An even fancier graph can be made by having both X and Y calculated as
functions of A. The following program does this by using the SIN(2* A) func-
tion for X, and the COS(3 * A) function for Y. The result is what physicists call a

“2 by 3 Lissajous figure”.

SETLISS

SECTION 4.4 MEDIUM RESOLUTION GRAPHICS ON THE TRS-80 167

10 I R s Tl 22 2223222222 22 2 22 SRRt

11 - * SETLISS (TRS-80 LISSAJOUS FIGURE) *
12 7 hkkkk kR AR RRRARARERFFARERRAR NI R AR R I AR AR A hk Ak
15 CLS

20 REM DRAW VERTICAL AXIS WITH "I

30 FOR V=1 TO 15: PRINT TAB(31); "I": NEXT V: PRINT TAB(31); "I";
40 REM DRAW HORIZONTAL AXIS WITH "-"

50 REM PRINT @ 0 MEANS PRINT AT THE BEGINNING OF THE FIRST LINE.
60 REM SINCE THERE ARE 64 CHARACTERS PER LINE, PRINT @ 64 MEANS

70 REM PRINT AT BEGINNING OF SECOND LINE, PRINT @ 128 MEANS PRINT
80 REM AT BEGINNING OF THIRD LINE, ETC. TO PRINT HORIZONTAL AXIS
90 REM AT 8TH LINE WE THEREFORE USE PRINT @ 512 AS FOLLOWS:

100 PRINT @ 512, "“;

110 FOR H=1 TO 62: PRINT "-";: NEXT H

120 REM NOW DRAW LISSAJOUS FIGURE USING SET(X,Y)
130 FOR A=0 TO 6.3 STEP .025

140 X=63.5*SIN(2*A)+63.5

150 y=23.5*COS {3*A)+23.5

160 SET(X,Y)

170 NEXT A

180 PRINT @ 862, "PRESS BREAK TO EXIT";

190 GOTO 190

200 END

Run of SETLISS

168

CHAPTER 4 A BIT OF ADVANCED BASIC

4.5 COLOR GRAPHICS ON THE APPLE II

LO RES DOTS

A number of microcomputers are able to display graphical output on a color TV
set. One of the best-known of these is the Apple II computer. In this section
we'll look at several programs written for this machine using the version of
BASIC this company calls APPLESOFT BASIC.

The Apple II has two graphing modes. The first is called low resolution (LO
RES for short) because it does its plotting with rectangular blocks on a 40 by 40
grid. Thus a total of 1600 rectangles can be placed on the screen. Each small rec-
tangle is plotted by using the special BASIC statement PLOT X,Y where both X
and Y must be integers between 0 and 39. For example, PLOT 10,20 would place
a rectangle 10 units to the right, and 20 units down with respect to the upper left
hand corner of the screen (which is position 0,0).

Before using PLOT X,Y this way, the Apple II must be put in LO RES
graphing mode with the BASIC statement:

100 GR
then the color must be set with a statement like this:

110 COLOR =2

There are 16 colors available corresponding to the numbers 0 to 15. Here's a
program to draw 16 horizontal “dotted” lines, one for each color. You won't see
the first line since the color 0 is “black”.

10 REM --- LO RES DOTS ---
20 GR

30 FOR N=0 TO 15

40 COLOR=N

50 ¥Y=2%*N+5

60 FOR X=0 TO 38 STEP 2

70 PLOT X,Y

80 NEXT X

90 NEXT N

100 END

SECTION 4.5 COLOR GRAPHICS ON THE APPLE Il 169

TERREENE B BE B
FESE R WEEEEE AR
(FEREERAEFEOE EE
FEEE AR NE R B
(PR R R A EE R E
AndumnbuNanuRRN
BeNulmBoumnniBun
BeRulusumnnaREn
BenuBudonRnniBun

(TR 8
Banaulus
BRsuluk

1

EENREERREEEE E I |

BuniBan

|

o
-
=
]
-
& |
=
-
E
=
=

TRRRERUR LR
FENERRNRERE

BRESD

‘mm

Run of LO RES DOTS

A graph of the sine function can also be plotted in LO RES mode. The low
resolution graphics gives the output an interesting “chunky” appearance. Here’s
a listing and run of such a program. Lines 120 and 130 illustrate two additional
LO RES graphics features used for plotting vertical lines and horizontal lines on
the Apple II. The statement

120 VLIN 0,39 AT 0

means draw a vertical line with Y going from 0 to 39, but with X fixed at 0.
Similarly,

240 HLIN 0,39 AT 19

means draw a horizontal line with X going from 0 to 39, but with Y fixed at 19.
Line 155 of our program causes the colors to change from 1 to 13 as A goes from
0 to 12.6. Scale factors are used in lines 160 and 170 to make X and Y fit in the 40
by 40 grid.

170

LO RES SINE

CHAPTER 4 A BIT OF ADVANCED BASIC

LIST

10 REM -~~~ LO RES SINE ~----
100 GR

110 COLOR= 2

120 VLIN 0,39 AT O

130 HLIN 0,39 AT 19

150 FOR A = 0 TO 12.6 STEP .05
155 COLOR= 1 + A

160 X = 3 * A

170 ¥y = 39 -~ 19.5 * (SIN (A) + 1)
180 PLOT X,Y

190 NEXT A

3LOAD s
3500 LO RES

Run of LO RES SINE

High Resolution Apple Graphics

The Apple II computer has a second graphics mode called high resolution (HI
RES for short) because it can plot a large number of very small rectangles on the
TV screen. There are two BASIC statements that put the computer into HI RES

HI RES SINE

SECTION 4.5 COLOR GRAPHICS ON THE APPLE I 171

mode. The first is

100 HGR

This statement switches the computer to a mode in which points can be plotted
on a grid 280 units wide by 160 units high. Approximately one-sixth of the
screen (at the bottom) is not used for graphing in this mode; it is reserved for
printing ordinary characters. The BASIC statement

100 HGR2

puts the computer in a similar HI RES mode, except that this time the entire
screen can be used for graphing. There is no room reserved at the bottom for
characters, but the graphing grid is now 280 units wide by 192 units high.

Here's an Apple II program that plots the sine function using the first of
these HI RES graphing modes. You'll notice that all the BASIC plotting words in
HI RES mode start with the letter H. You should also know that eight codes are
available in this mode for color, but two are “black” (HCOLOR = 0 and
HCOLOR = 4). Also some colors don’t work for some vertical lines!

Our program starts by using HCOLOR = 2 for plotting the axes. The axes
are then drawn in lines 120 and 130. In HI RES mode there is only one BASIC
plotting keyword (written HPLOT), but it can be used to plot lines as well as
points. Line 130 plots a line from the point 0,0 to the point 0,159 for the vertical
axis, while line 130 plots a line from the point 0,79) to 279,79 for the horizontal
axis.

Next the color is set to 1 in line 140. Then the sine function is plotted with a
FOR loop (lines 150 to 190). Scaled values of X and Y are calculated in lines 160
and 170, and each point X,Y is plotted in line 180. Line 175 is used to change the
color of the graph when the angle A reaches 6.28 radians (360 degrees) just for
fun.

LIST

10 REM ---- HI RES SINE ----
100 HGR

110 HCOLOR= 2

120 HPLOT 0,0 TO 0,159

130 HPLOT 0,79 TO 279,79

140 HCOLOR= 1

150 FOR A = 0 TO 12.6 STEP .05
160 X = 22 * A

170 ¥ = 159 -~ 79.5 * { SIN (A) + 1)
175 IF A > 6.28 THEN HCOLOR= 5
180 HPLOT X,Y

190 NEXT A

200 END

172

RNDVECT

CHAPTER

:}

4 A BIT OF ADVANCED BASIC

Run of HI RES SINE

As another illustration of how flexible the HPLOT statement is, here’s a
simple program that draws a sequence of line segments (also called vectors).
The starting point is in the middle of the screen at 139,79. Each succeeding point
is selected randomly and then a line is drawn from the old point to the new one.
The overall effect is that of a random zig-zag pattern with the lines changing col-
ors cyclically for C =1 to 7. Since color 4 is black, there will be “breaks” in the
pattern whenever C =4,

LI

5
10
20
30
40
50
60
70
80
90
100
110
120
130
140

ST

REM ~~=- RNDVECT ----
HGR :C = 1

X1 = 139:v1 = 79

PRINT "HOW MANY VECTORS";:

FOR I = 1 TO N
HCOLOR= C
X2 = INT (280 * RND (1))

HPLOT x1,¥l TO X2,¥2

X1l = ¥2:¥1 = ¥2

C=C+ 1
IFC >7 THEN C = 1
NEXT I
PRINT ®AGAIN (Y=YES)"::
IF A$ = "y" THEN 10
END

INPUT N

Y2 = INT (159 * RND (1))

INPUT AS

ELLIPSE

SECTION 4.5 COLOR GRAPHICS ON THE APPLE 11 173

}Lﬁﬂﬁ EHDUECT
AEUH

HOH HANY UE

CTORS743
ALGIH (Y=YES2T

z

Run of RNDVECT

We'll conclude this section with two programs that use the HGR2 mode.
The first one draws an artistic elliptical pattern. In lines 310 and 320 we make
X2 and Y2 equal to scaled values of the SIN(A) and COS(A) functions. Analytic
geometry tells us that therefore each of the points X2,Y2 must lie on an ellipse.
We also randomly calculate points X1,Y1 near the center of this ellipse. Then in
line 330 we plot line segments between these pairs of points, producing the re-
sult shown in the photograph. Of course the actual output will be in color, with
the color of each line segment determined by the variable C.

LISsT

10 REM ---- ELLIPSE ===~

20 REM PRESS CTRL AND C TO EXIT
30 :

100 HGR2

110 HCOLOR= 7
120 HPLOT 0,0 TO 279,0 TO 279,191 TO 0,1%1 TO 0,0

130

200 REM ~-- START PLOT LOOP ---
205 HCOLOR= C

210 X1 = INT (100 * RND (1) + 60)
220 vl = INT (80 * RND (1) + 20)
310 X2 = 130 * SIN (A) + 138

320 Y2 = 90 * COS (A) + 95

174 CHAPTER 4 A BIT OF ADVANCED BASIC

330 HPLOT X1,Yl TO X2,Y2
380 A= 4+ .1
385 Cc=C+ 1
387 IF C > 7 THEN C = 0
390 GoTO 200

Run of ELLIPSE

Our last program works in a similar manner, except that X1 and Y1 are
now fixed at the center, and X2 and Y2 describe a 3 X 2 Lissajous figure instead
of an ellipse. The overall effect suggests an abstract painting of a butterfly.

LISSAJOUS LIST
10 REM = ~===- LISSAJOUS —~—---
20 REM PRESS CTRL AND C TO EXIT
30 :
100 HGR2

110 HCOLOR= 7

120 HPLOT 0,0 TO 279,0 TO 279,191 TO 0,191 TO 0,0
130 A= 0:C=0

140

4.6 PROJECTS

SECTION 4.6 PROJECTS 175

200 REM --- START PLOT LOOP ---
205 HCOLOR= C

210 X1 = 134

220 Y1 = 92

310 X2 = 130 * SIN (2 * A) + 138

320 y2 90 * COS (3 * A) + 95
330 HPLOT X1,Yl TO X2,Y2

380 A=A+ .1

385 ¢c=C+ 1

387 IFC > 7 THENC = 0

390 GOTO 200

Run of LISSAJOUS

1. Experiment with modifying the Lissajous programs (TRS-80 or Apple) by
using SIN(M * A) and COS(N * A), where M and N are integers supplied by
the user via the statement INPUT M, N placed at the beginning of the pro-
gram. Which values of M and N give an ellipse? Which give a 3 X 2
Lissajous figure? How can you get a “figure eight” graph? What other values
are interesting? What happens when M and N are switched?

176

CHAPTER 4 A BIT OF ADVANCED BASIC

2.

Write a program that draws vectors (line segments) between points supplied
by the user, and points randomly generated by the program or generated by
mathematical functions. Investigate use of INKEY$ on the TRS-80 and GET
on the Apple (or PET) as a means of obtaining user input.

(Advanced) Design a sequence of stick figure cartoons that successively
move parts of the figure to give the illusion of motion. Then write a program
to loop through this sequence over and over to produce a continuous
“movie”. Next try making the figure move across the screen while it simul-
taneously goes through its motions.

The extended string handling facilities of BASIC make it possible to write
word processing programs. Investigate this subject, and see if you can write
a simple text editing program. Information on how to do this can be found in
chapter 4 of the book You Just Bought a Personal What? (BYTE Books,
Peterborough, NH 03458). After you have the editor working, investigate
the subject of a text formatter. An advanced discussion of a text formatter
written in structured FORTRAN can be found in chapter 7 of Software Tools
(Addison-Wesley, Reading MA 01867).

Wrrite a program that uses the graphical output of a computer as both a dis-
play device and score keeper for the game of TIC TAC TOE. You'll want to
extend the program TICTAC so that either a large “X” or large “O” can be
drawn in the appropriate square. For example, if you number the squares 1,
2, 3 for the first row, 4, 5, 6 for the second row, and 7, 8, 9 for the last row,
then the input:

Player X, WHAT IS YOUR MOVE? 5
should print a large “X” in the center square. The game should be played by

two human players, but the computer should announce illegal moves, and
also declare a winner.

APPENDIX A:
EXAMPLE OF USING TIMESHARING

Example of using a large timesharing system:

PRESS THE CARRIAGE RETURN
(CR) KEY AT END OF EACH LINE.,

VBET TTY SYS A% —e

THIS PARTICULAR
SYSTEM OFFERS
A CHOICE OF TWO
COMPUTERS

CALLED A AND B.

FITT DEC-1077/6 61RB.97 91146143

LOGIN 1130027121641

JOBE 17 PITT DEC~1077/0 61RB.97 TTY100
Fassword?

1.9 units remzining lLast lodgin?! 1848 2-Aug-77

0917 A-pug-77 Thur
+BASIC THE USER TYPED EVERYTHING
AFTER THE . OR > SYMBOLS.

READY
=10 FOR K=1 T0 9
=20 PRINT Ki#* TIMES ¢ =®3K%?9

EVERYTHING ELSE WAS TYPED
B8Y THE COMPUTER.

»30 NEXT K

=40 END

=RUN

NONAME 09118 04-AUG~-77
1 TIMES 9 = 9
2 TIMES ¢ = 18
I TIMES @ = 27
4 TIMES 9 = 36
5 TIMES ¢ = 45
& TIMES ¢ = 54
7 TIMES 9 = 43
8 TIMES 9 = 72
¢ TIMES ¢ = 81

YOU INVENT THIS NAME
FOR THE PROGRAM, USING
SIX LETTERS OR LESS.

TIME: 0,10 SECS.

FHEAVE MULT
FRYE

doh 17 C113002:1216410 off TTYL00 at 0919 4-Aug~-77 Connect=3 Min
iak R+W=154412 Tare [0=0 Saved 211 files (4 blocks)

CFU 03101 Core HWM=4F Units=0.0093 ($0.70)

177

178

APPENDIX A EXAMPLE OF USING A TIMESHARING SYSTEM

Example of a RUN on the same timesharing system some time later:

+SET TTY 8Y8 A
FITT DEC-1077/6 61K.97 101091111

LOGIN 113002/121641
JOB 19 PITT DEC-1077/6 41R.97 TTY100

Password?

1.9 units remaining Last login! 0916 4-Aug~77
1009 4-Ang—-77 Thur

+RASIC

LOADS THE OLD“muLT"
=000 MULY PROGRAM FROM DISK.

=LIST

MULT 10313 04-AUG-77

10 FOR K=1 TO ¢

20 PRINT K3* TIMES 9 =*3iKx9

30 NEXT K

40 END

5 FRINT"MULTIPLICATION TARLE FOR 9%
FRUN

A NEW LINE IS PUT
IN THE PROGRAM.

MULTY 1014 04-AUG-77
MULTIFPLICATION TARLE FOR ¢

I TIMES 9 = @

2 TIMES ¢ = 18

T TIMES ¢ = 27

4 TIMES 9 = 36

5 TIMES 9 = 45

6 TIMES ¢ = 34

7 TIMES 9 = 43

8 TIMES 9 = 72

¢ TIMES 9 = 81

REPLACES THE OLD “AMAULT”
PROGRAM ON DISK WITH
THE NEW VERSION.

TIME: 0.12 SECS.
*REPLACE -

SRYE

Job 19 [113002:12164173 off TTY100 a2t 1014 4-Aua-77 Connect=é Min
Disk R+W=1534+43 Tare I0=0 Saved all files (12 blocks)

CPU 0202 Core HWM=4F Units=0,0124 ($0.93)

APPENDIX B:
THE ASCII CODES

APPENDIX B 7-Bit ASCII Codes

Binary Meaning Octal Decimal Binary Meaning Octal Decimal
Form of Code Form Form Form of Code Form Form
0000000 NULL (t@) 000 0 0100000 SP 040 32
0000001 SOH (1A) 001 1 0100001 ! 041 33
0000010 STX (1B) 002 2 0100010 ” 042 34
0000011 ETX (1C) 003 3 0100011 # 043 35
0000100 EOT (1D) 004 4 0100100 $ 044 36
0000101 ENQ (1E) 005 5 0100101 % 045 37
0000110 ACK (1F) 006 6 0100110 & 046 38
0000111 BELL (1G) 007 7 0100111 ! 047 39
0001000 BS (1H) 010 8 0101000 (050 40
0001001 HT (1D 011 9 0101001) 051 41
0001010 LF (1)) 012 10 0101010 * 052 42
0001011 VT (1K) 013 11 0101011 + 053 43
0001100 FF (1L) 014 12 0101100 , 054 44
0001101 CR (M) 015 13 0101101 - 055 45
0001110 SO (iN) 016 14 0101110 . 056 46
0001111 SI (1O) 017 15 0101111 / 057 47
0010000 DLE (1P) 020 16 0110000 0 060 48
0010001 DC1 (1Q) 021 17 0110001 1 061 49
0010010 DC2 (1R) 022 18 0110010 2 062 50
0010011 DC3 (1S) 023 19 0110011 3 063 51
0010100 DC4 (1T) 024 20 0110100 4 064 52
0010101 NAK (1U) 025 21 0110101 5 065 53
0010110 SYN (1V) 026 22 0110110 6 066 54
0010111 ETB (1W) 027 23 0110111 7 067 55
0011000 CAN (1X) 030 24 0111000 8 070 56
0011001 EM (1Y) 031 25 0111001 9 071 57
0011010 SUB (12) 032 26 0111010 : 072 58
0011011 ESC (1) 033 27 0111011 ; 073 59
0011100 ES (t\) 034 28 0111100 < 074 60
0011101 GS (tD 035 29 0111101 = 075 61
0011110 RS (AN 036 30 0111110 > 076 62
0011111 Us ¢t_) 037 31 0111111 ? 077 63
Control Codes The codes from octal 000 to octal 037 are used for special control functions.

For example, code 002 is used in communications work to mean “start of
text” (STX), while code 007 means “ring the bell on the terminal.”
These codes do not print anything on output devices. However they can be

sent to a computer in two ways.
(1) To input a control code from an ASCII keyboard, type the
corresponding control character by holding down the key marked control

179

180 APPENDIX B ASCII CODES

Binary Meaning Octal Decimal Binary Meaning Octal Decimal
Form of Code Form Form Form of Code Form Form
1000000 @ 100 64 1100000 140 96
1000001 A 101 65 1100001 a 141 97
1000010 B 102 66 1100010 b 142 98
1000011 C 103 67 1100011 C 143 99
1000100 D 104 68 1100100 d 144 100
1000101 E 105 69 1100101 e 145 101
1000110 F 106 70 1100110 f 146 102
1000111 G 107 71 1100111 g 147 103
1001000 H 110 72 1101000 h 150 104
1001001 I 111 73 1101001 i 151 105
1001010 J 112 74 1101010 j 152 106
1001011 K 113 75 1101011 k 153 107
1001100 L 114 76 1101100 I 154 108
1001101 M 115 77 1101101 m 155 109
1001110 N 116 78 1101110 n 156 110
1001111 O 117 79 1101111 o 157 111
1010000 P 120 80 1110000 p 160 112
1010001 Q 121 81 1110001 q 161 113
1010010 R 122 82 1110010 r 162 114
1010011 S 123 83 1110011] 163 115
1010100 T 124 84 1110100 t 164 116
1010101 U 125 85 1110101 u 165 117
1010110 \Y% 126 86 1110110 v 166 118
1010111 W 127 87 1110111 w 167 119
1011000 X 130 88 1111000 X 170 120
1011001 Y 131 89 1111001 y 171 121
1011010 Z 132 90 1111010 z 172 122
1011011 [133 91 1111011 { 173 123
1011100 \ 134 92 1111100 | 174 124
1011101] 135 93 1111101 } 175 125
1011110 A 136 94 1111110 ~ 176 126
1011111 — 137 95 1111111 DEL 177 127

(CTRL), and then simultaneously pressing the character that has a code equal
to the control code + 100 octal. For example, to ring the bell (code 007 octal)
hold down the control key,and then simultaneously press the key for G (code
107 octal). Our table shows control-G as 1G.

(2) To send a control code from BASIC, use the CHR$(D) function de-
scribed in Section 4.7, where D is the decimal equivalent of the code. For
example, to ring the bell use

10 PRINT CHR$(7)

On the Apple II this will produce a “beep” sound.

APPENDIX C:
SUMMARY OF BASIC

Statements

Name Purpose Example

(In means line no.)

DATA Holds data for READ. 35 DATA 5,3.14,"SMITH”
DIM Declares maximum size of array. 35 DIM A(15),X(20,4),N$(25)
END Last statement in program. 9999 END
FOR...TO...(STEP) Sets up and controls loop. 35 FOR K=1 TO N STEP 2
GOSUB In Branches to subroutine at In. 35 GOSUB 800
GOTO In Branches to In. 35 GOTO 55
IF...THEN In Branches to In if condition true. 35 IF X-5<=2 THEN 125
IF... THEN stmts Executes statements if true. 35 IF Z>5 THEN Z=1:PRINT Z
IF...THEN In ELSEIn Branches to first In if true,

branches to second In if false. 35 1F Y=X THEN 85 ELSE 95
IF... THEN stmts ELSE Does stmts after THEN if true,
stmts does stmts after ELSE if false. 35 IF Y>M THEN M=Y ELSE N=Y:D=C
INPUT Requests data from terminal. 35 INPUT A,B,N%
LET Assigns value of expression to

variable. 35 LET A=3.14"R*R
LINE INPUT Inputs string containing commas, etc. 35 LINE INPUT A%
NEXT Marks end of FOR loop. 35 NEXT K
ON X GOSUB... Branches to Xth subroutine. 35 ON X GOSUB 899,999
ONY GOTO... Branches to Yth line number. 35 ONY GOTO 65,75,85
PRINT Types strings and/or numbers. 35 PRINT “ANS=";N+1.5,A%
PRINT USING Types in given format. 35 PRINT USING “## . ##";X
READ Moves values from DATA into

variables. 5 READ N, X,A%
RESTORE Resets DATA pointer to first item. 35 RESTORE
RETURN Go to statement following last

GOSUB. 35 RETURN
STOP Terminate program. 35 5TOP

Special Features

POKE loc, val PEEK (loc) OUT port, val PRINT @ N, exp

Commands

CLEAR, CONT, DELETE, EDIT, LIST, LOAD (CLOAD), NEW, OLD, RUN,
SAVE (CSAVE)

181

182 APPENDIX C SUMMARY OF BASIC
Numeric Functions

Name Purpose

ABS(X) Absolute value of X
ATN(X) Arctangent of X

COS(X) Cosine of X

EXP(X) e to the Xth power
INP(X) Value at port X

INT(X) Largest integer <= X
LOG((X) Natural log of X

RND(1) 0 <= random number < 1
SGN(X) Sign of X

SIN(X) Sine of X

SQR(X) Square root of X

TAN(X) Tangent of X

String Functions

Name Purpose
ASC(X9$) Decimal ASCII of 1st character in X$
CHRS$() Character with ASCII code I

INSTR(X$,Y$)
LEFT$(X$.1)
LEN(X$)
MIDS$(X$,1,])
RIGHTS(X$,1)
SPACES$(I)
STR$(N)
VAL(X$)

Position of Y$ in X$

Leftmost I characters of X$

Number of characters in X$

Substring of X$ starting at I with length J
Rightmost I characters of X$

String with I spaces

String that looks like N

Number that looks like X%

Variables, Operators, Relations

A, Z, A1, 29, X(I), X(L]), N(X(I),K), A$, N&(I), Z%(1,])

+7—I *I/IT

< L=, =, 5=, > <>

File Features

Vary with systems. See your system manual.

Index

ABS, 81

absolute value, 81
accumulator, 53

acoustic coupler, 23
ADDITION PRACTICE, 37
algorithm, 157

alphanumeric terminals, 102
Atari computer, 14

AND, 154, 156

Apple II computer, 12-15
APPROXIMATE ARITHMETIC, 82
area of a circle, 34, 51
argument, 109

arithmetic expression, 42
arithmetic operators, 43
ARRAY DEMO, 124, 128
arrays, 123-128, 152-154
ASCII code, 7, 139, Appendix B
ASCII keyboard, 6
assignment statements, 50, 51
ATN, 109

BASIC interpreter, 13, 14
BASIC-PLUS, 43, 96-98, 131
BASIC-PLUS ROULETTE, 97
BATTING AVERAGES, 66
BATTING GRAPH, 69
binary code, 7

bit, 6

block structure, 147

BOB, 31

BOB FOREVER, 32

Boolean operators, 154

BYE, 24

byte, 10

calculator mode, 16, 30
cassettes, 11
checkbook, 54

CIRCLE AREA, 51
CLOAD, 142

clock, 11

COLOR, 168

color graphics, 168-176

column numbers, 39, 40, 106
commands, 22

commas, 39, 42

components, 9

compound interest, 88, 91
computed GO TO, 78
computer, 4-12

computer stores and clubs, 22
concatenation, 153
conditional branching, 46
conditions, 47

constants in BASIC, 74, 75
CONTINUED FRACTIONS, 136
control-C, 32, 45

CQOS, 109, 113

COSINE NAME, 114
COUNT, 51

CPU, 11

craps rules, 75

CRAPS SIMULATION, 77
CRT, 8, 102

CSAVE, 142

DATA, 66-70

decision tree, 60

DEF ENX, 91

degrees, 112

deleting statements, 21, 22
dimensioning strings, 162
direct mode, 17, 30

disk files, 141

disk storage, 11

distance, 81

dot matrix, 102, 103
double precision, 137
double subscripts, 127

E format, 74, 75
efficiency in programs, 91
ELLIPSE, 173

ELSE, 98, 154, 155

END, 45

EPROM, 11

error, absolute, 83

error, percent, 83

error, relative, 83

errors, correcting, 19-21

execute, 14

EXP, 109

exponentiation, 43

expressions, 42, 44

extended BASIC, 43, 96-98, 131, 149

Fibonacci numbers, 129

fields, 39, 40, 161

floating point numbers, 23, 74
floppy disk, 11, 141

flow chart, 47, 48

FOR . . . NEXT, 55-59, 131, 150
functions, 81, 109

GO TO, 45

GO SUB, 89, 90

GR, 168

graphics, 164-176

graphic terminals, 101-103

hard copy, 8, 101-103
HGR, 171

HGR2, 171

HI NAME, 32

HIRES SINE, 170
HICCUP, 79

HLIN, 169
HORRIBLE EXAMPLE, 123
HOT DOG, 61

Hour 0, 28

Hour 1, 36

Hour 2, 50

Hour 3, 54

Hour 4, 57

Hour 5, 65

Hour 6, 71

Hour 7, 81

Hour 8, 88

IF . .. THEN, 47, 154, 155
IMSAI computer, 10

183

184 INDEX

incrementing, 52

index array, 161

indirect mode, 17, 30
infinite loop, 45

INPUT, 37, 38

INPUT CHECK, 84

input devices, 6

INSERT, 159

INSERT2, 162

insertion sort, 157-163
INT, 71

INT DEMO, 72

integer arithmetic, 31
interest, 88, 91

INTEREST FUNCTION, 92
INTEREST SUBROUTINE, 90
170 devices, 6

key field, 162
keywords, 27, 29
KILL, 142
kilobyte, 10

LET, 50

light pens, 102

line numbers, 28
LISSAJOUS, 174
LIST, 19, 22

LO RES DOTS, 169
LO RES SINE, 170
LOAD, 22, 142

LOG, 109

logical connectives, 154-156
login, 24, Appendix A
loops, 55

machine language, 14

mass storage, 11
MAX-MIN WEIGHTS, 126
memory, 10, 15, 38
MODULATED NAME, 115
modules, 9

motherboard, 9

MOUNT, 141

MPU, 11

MULT TABLE, 17
multiple statements, 150

MULTIPLICATION PRACTICE, 52

NAME, 142

nested loops, 58, 59
Nevison,]., 63
NEW, 20, 22

NEXT, 55

normal curve, 132
NOT, 154

NUMBER GUESS, 82

OLD, 22

ON ... GO SUB, 93

ON...GOTO, 78
perators, 43

OR, 154
output devices, 8

packaged computer systems, 12
paper tape, 139

parallel, 7

parentheses, 44

Pascal’s triangle, 143
password, 24, Appendix A
PET computer, 13

PIGGY BANK, 20
PINBALL COUNT, 131
pinball simulation, 130
PIZZA, 34

PLOT, 168

plotters, 102

pointers, 70, 126, 161
port, 9

power supply, 9
precedence, 44, 47
PRINT, 39-42

PRINT USING, 134
PRODUCT, 30

program, 5, 13, 14, 17, 27
programming style, 62

quadratic curve, 106
QUICKSORT, 160
QuIZ, 79

quotation marks, 41, 151

radians, 112

Radio Shack computer, 25, 164
RAM, 10

random numbers, 73, 74
RANDOMIZE, 78
raster scan displays, 102
READ, 66-70

real numbers, 74
records, 161

relations, 47

REM, 86

REMARK DEMO, 87
RESTORE, 70

RND, 73-77

RND DEMQ, 73
RNDVECT, 172

ROM, 10

rounding, 73

RUN, 17-19, 22

SAVE, 22, 141
saving programs, 138
scale factor, 118

SCALED WEIGHT GRAPH, 120

scaling graphs, 117-120, 165
scientific notation, 74

SCR, 20, 22

semicolons, 40, 42, 57
serial, 7

SET, 164

SETSINE, 165

SETLISS, 167

SGN, 109, 116

SHELF LABELS, 67

SHELL SORT, 160
SIMULATED TAB, 117
SIN, 109

SINE GRAPH, 112

SINE NAME, 113

sorting, 157

SOR, 84, 85

SQUARE ROOT QUIZ, 85
SQUARES AND CUBES, 33
STARS, 56

statements, 27

STD. BASIC ROULETTE, 97
STEP, 56

STOP, 46

STRINGA, 151

string arrays, 152, 161
string constants, 151

string relations, 162

string variables, 151

strings, 151

structured programming, 64
style corner, 64, 145
SUBMARINE, 95
subroutines, 89, 90

subscripted variables, 122-128, 152-153

subscripts, 123
sytax error, 19
system, 5

TAB, 61, 62, 104-108, 116
TAB CURVE, 106

TAB LINES, 107

TABLE, 110

TAN, 109, 116

tangent function, 109, 116
TICTAC, 164

timesharing, 23, 24, Appendix A

TIP, 31

transforming RND, 76
translating graphs, 117, 118
tree structures, 60
trigonometric functions, 112

two-dimensional arrays, 127, 153

UNLOAD, 141

value, 109

variables, 39, 53, 151
VDM, 8

vector graphics, 102, 103
vectors, 172

VLIN, 169

VOTE PERCENT, 34
VOTE WINNER, 36

WEIGHT AVERAGE, 125
WEIGHT GRAPH, 108
word processing, 176

zones for PRINT, 40

57.95
USA

A Bit of BASIC

The Authors
Thomas A. Dwyer

Margot Critchfield

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts « Menlo Park, California
London + Amsterdam - Don Mills, Ontario + Sydney ISBN 0-201-03115-9

	01.pdf
	37.pdf
	99.pdf
	119.pdf
	145.pdf

